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Preface

Communities face a number of risks from natural and anthropogenic hazards. Risk
and reliability analysis provide essential information for risk determination
(the quantification of the probabilities of potential consequences in various haz-
ardous scenarios), evaluation (the decision of whether actions are necessary, under
conditions of uncertainty), and mitigation (the decision of how to act).

Over the past few decades, risk and reliability analysis have gone from a spe-
cialty topic to a mainstream subject in engineering, becoming essential tools for
informed decision-making, hazard mitigation and planning. This book presents the
state of the art in risk and reliability with a unique collection of contributions from
some of the foremost scholars in the field. Combining the most advanced analysis
techniques with practical applications, this book is one of the most comprehensive
and up-to-date references available on this subject, makes the state of the art in risk
and reliability analysis accessible to a large audience, and helps make risk and
reliability analysis the rigorous foundation of engineering decision-making. The
fundamental concepts needed to conduct risk and reliability assessments are cov-
ered in detail, providing readers with a sound understanding of the field and making
the book a powerful tool for students and researchers alike.

The book is a tribute to one of the fathers of modern risk and reliability analysis,
Prof. Armen Der Kiureghian. During his career, Prof. Der Kiureghian has made
fundamental and revolutionary research contributions. He has pioneered methods
for safety and reliability assessment of complex structures and for stochastic seis-
mic analysis of buildings, bridges and critical equipment. He has more than
300 publications, including more than 100 journal articles and book chapters. Many
of his publications have become mandatory reading for the current and future
generations of students, researchers and practitioners.

The book is organized into six parts. Part I gives a general introduction of the
book including a discussion of its goal and contributions, presents an overview
of the field of risk and reliability analysis, and discusses the role of Armen Der
Kiureghian in modern risk and reliability analysis. Part II focuses specifically on
reliability analysis, and includes a description of computational methods and
applications to some of the most complex real-life problems. Part III covers the
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subject of stochastic dynamics. As in Part II, Part III also includes both theoretical
formulations and applications. Part IV discusses methods for sensitivity analysis
and optimization in the context of risk and reliability analysis. Part V focuses on
statistical analysis and the development of probabilistic models. Finally, Part VI
covers life-cycle and resilience analysis as well as financial tools for risk mitigation.
While each part has a specific and distinct focus, many of the chapters draw from
methods and techniques covered in some of the other parts of the book. Such links
among chapters help understand the relations among the different subjects.

Urbana, IL, USA Paolo Gardoni

Armen Der Kiureghian
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Introduction



Risk and Reliability Analysis

Paolo Gardoni

Abstract Natural and anthropogenic hazards pose significant risks to individuals
and communities. Over the past few decades, risk and reliability analysis have gone
from a specialty topic to a mainstream subject in engineering, becoming essential
tools for informed decision making, hazard mitigation, and planning. This book
presents the state-of-the-art in risk and reliability analysis with a unique collection
of contributions from some of the foremost scholars in the field. Combining the
most advanced analysis techniques with practical applications, this book is one of
the most comprehensive and up-to-date references available on this subject, makes
the state-of-the-art in risk and reliability analysis accessible to a large audience, and
helps make risk and reliability analysis the rigorous foundation of engineering
decision-making. The fundamental concepts needed to conduct risk and reliability
analysis are covered in detail, providing readers with a sound understanding of the
field and making the book a powerful tool for students, researchers and practitioners
(engineering professionals and risk analysts) alike. The book is a tribute to Pro-
fessor Armen Der Kiureghian, one of the fathers of modern risk and reliability
analysis. During his career, Professor Der Kiureghian has made fundamental and
revolutionary research contributions to this field. He has pioneered methods for
safety and reliability assessment of complex structures and for stochastic seismic
analysis of buildings, bridges and critical equipment. Many of his publications have
become mandatory readings for the current and future generations of students,
researchers and practitioners. The book is organized into six parts. Part I gives a
general introduction of the book including a discussion of its goal and contribu-
tions, presents an overview of the field of risk and reliability analysis, and discusses
the role of Armen Der Kiureghian in modern risk and reliability analysis. Part II
focuses specifically on reliability analysis, and includes a description of efficient
computational methods and their applications to some of the most complex real-life
problems. Part III covers the subject of stochastic dynamics, presenting both

P. Gardoni (✉)
Civil and Environmental Engineering, 3118 Newmark Civil Engineering Laboratory,
University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801,
USA
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methods and applications. Part IV discusses methods for sensitivity analysis and
optimization in the context of risk and reliability analysis. Part V focuses on sta-
tistical analysis and the development of probabilistic models. Finally, Part VI
covers life-cycle and resilience analysis as well as different financial tools for risk
mitigation. While each part has a specific focus, many of the chapters build on and
use the methods and techniques covered in some of the other parts of the book.
Such links help understand the relation between the different subjects, which is
needed for a thorough understanding of the topic of risk and reliability analysis.

1 Introduction

Communities face a number of risks from natural and anthropogenic hazards
(Gardoni and LaFave 2016; Gardoni et al. 2016a, b). Engineers, risk analysts,
decision-makers and community leaders need to work collaboratively to develop
sustainable solution strategies. “Managing such risks requires communities to make
comparative judgments about the relative gravity of diverse risks. Such judgments
are reflected in the priorities that communities set in terms of the risks that they will
address through mitigation policy, and so the kinds of risks to which limited
resources will be devoted.” (Gardoni and Murphy 2014).

Risk analysis is an important tool for informed decision making (Rowe 1980;
Vose 2000; Bedford and Cooke 2001; Haimes 2004; Murphy and Gardoni 2011;
Gardoni and Murphy 2008, 2014). In this context, risk is typically defined in terms
of the probabilities of occurrence and the associated consequences of hazardous
scenarios (Kaplan and Gerrick 1981; Murphy and Gardoni 2006, 2007). Reliability
analysis can be used to quantify the safety of engineering assets and to estimate the
probabilities related to structural performance that are needed in risk analysis (e.g.,
Benjamin and Cornell 1970; Ditlevsen 1981; Hart 1982; Thoft-Christense and
Baker 1982; Augusti et al. 1984; Thoft-Christense and Murotsu 1986; Ayyub and
McCuen 2011; Madsen et al. 1986; Wen 1990; Ditlevsen and Madsen 1996;
Melchers 1999; Ang and Tang 2007).

Modern reliability analysis dates back to the beginning of the 20th Century, with
significant contributions made in the second half of that century. Over the past few
decades, reliability analysis has gone from a specialty topic to a mainstream subject
in engineering. Currently it is being used in the development of design codes (e.g.,
Ellingwood 1980; Vrouwenvelder 1997; Rosowsky and Ellingwood 2002; Nowak
and Collins 2012; Briaud et al. 2013) and the assessment of a number of assets
ranging from bridges (e.g., Stewart and Rosowsky 1998; Choi et al. 2004; Choe et al.
2008, 2009, 2010; Pillai et al. 2010, 2014; Zhong et al. 2012) to buildings (e.g.,
Rossetto and Elnashai 2003; van de Lindt and Walz 2003; van de Lindt 2004; Kwon
and Elnashai 2006; Ramamoorthy et al. 2006, 2008; Williams et al. 2009; Bai et al.
2009, 2011, 2015; Xu and Gardoni 2016; Elhami Khorasani et al. 2016), and from
nuclear power plants (e.g., Swain and Guttmann 1983; Ellingwood and More 1993;
Gardoni et al. 2007) to offshore structures (e.g., Wirsching 1984; Melchers 2005;
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Moan 2005; Mousavi et al. 2013; Mousavi and Gardoni 2014a, b; Mardfekri and
Gardoni 2015). More broadly and going beyond the traditional engineering disci-
plinary lines, risk and reliability analysis are the rigorous foundation of the pre-
diction of the societal impact of natural and anthropogenic hazards (Corotis
2009; Lind and Nathwani 2012; Gardoni et al. 2016a, b; Stewart and Reid 2016).

This book presents the state-of-the-art in risk and reliability with a unique collection
of contributions from some of the foremost scholars in the field. Combining the most
advanced analysis techniques with practical applications, it is one of the most com-
prehensive and up-to-date books available on risk- and reliability-based engineering.
All of the fundamental concepts needed to conduct risk and reliability analysis are
covered in detail, providing readerswith a sound understanding of thefield andmaking
the book a powerful tool for students, researchers and practitioners alike.

The book is written in honor of Professor Armen Der Kiureghian, one of the
fathers of modern risk and reliability analysis.

2 Armen Der Kiureghian and His Role in Modern Risk
and Reliability Analysis

2.1 Biography

Professor Der Kiureghian is the former Taisei Professor of Civil Engineering in the
Department of Civil and Environmental Engineering at the University of California,
Berkeley and current President of the American University of Armenia (AUA). He
was born in Isfahan, Iran. His father was prominent Armenian painter Sumbat Der
Kiureghian, particularly known for his watercolors and innovative art forms (Der
Kiureghian 2009). Professor Der Kiureghian later received his B.S. and M.S. in
Civil Engineering from the University of Tehran, Iran and his Ph.D. in Structural
Engineering in 1975 from the University of Illinois at Urbana-Champaign. In 1978,
Professor Der Kiureghian joined the faculty at the University of California,
Berkeley after three years as a faculty at the University of Southern California. In
1983, Professor Der Kiureghian married Nelly Ouzounian with whom he had two
children, Naira and Sebouh. A few years later, after the devastating Spitak earth-
quake of 1988 in Armenia, he was instrumental in establishing AUA in Yerevan as
an affiliate of the University of California. Before becoming President of AUA, he
served as the founding Dean of Engineering (1991–2007), the Director of the
Engineering Research Center (1991–2004), and as Interim Provost (2011–2012) of
AUA concurrently with his position at Berkeley.

In recognition of his achievements, he is a member of a number of societies and
associations. Professor Der Kiureghian is an

• Elected Member of the US National Academy of Engineering, 2011;
• Elected Foreign Member of the National Academy of Sciences of Armenia,

1998; and
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• Elected Foreign Member of the National Academy of Engineering of Armenia,
1994.

In addition, he is the recipient of several awards, including the

• George Winter Medal from the Structural Engineering Institute of ASCE, 2014;
• Distinguished Research Award from the International Association for Structural

Safety and Reliability, 2013;
• Alfred M. Freudenthal Medal from the Engineering Mechanics Division of

ASCE, 2006;
• Thomas A. Middlebrooks Award from the Goe-Institute of ASCE, 2006;
• CERRA Award from the Civil Engineering Risk and Reliability Association,

1999; and
• Walter L. Huber Civil Engineering Research Prize from ASCE, 1989.

In 2006, Professor Der Kiureghian also became a Distinguished Alumnus of the
Department of Civil and Environmental Engineering at the University of Illinois at
Urbana-Champaign.

In addition to his scholarly achievements, Professor Der Kiureghian has also
made contributions to the worlds of fine arts. In particular, his watercolors of
landscapes and still life have been appreciated worldwide through a number of
expositions. Professor Der Kiureghian is carrying forward painting techniques that
he learned from his father.

2.2 Role in Modern Risk and Reliability Analysis

Professor Der Kiureghian is one of the fathers of modern risk and reliability analysis.
During his career, he has made fundamental and groundbreaking research contribu-
tions. He has pioneered methods for safety and reliability assessment of complex
structures and for stochastic seismic analysis of buildings, bridges and critical
equipment. He has more than 300 publications, including more than 100 journal
articles and book chapters. Many of his publications have become mandatory readings
for the current and future generations of students, researchers and practitioners.

Professor Der Kiureghian scholarly contributions started with a seminal paper
written with his Ph.D. advisor, Professor Alfredo H.-S. Ang, on seismic risk
analysis (Der Kiureghian and Ang 1977). He then continued to make contributions
to the field of risk and reliability analysis throughout his career. He pioneered novel
methods for Reliability Analysis1 and made a number of significant contributions to

1References include (Moghtaderi-Zadeh et al. 1982; Der Kiureghian and Moghtaderi-Zadeh 1982;
Der Kiureghian 1983, 1996a, b; Moghtaderi-Zadeh and Der Kiureghian 1983; Der Kiureghian and
Liu 1986; Liu and Der Kiureghian 1986, 1991a; Der Kiureghian et al. 1987, 1994; Der Kiureghian
and Ke 1988; Der Kiureghian 1996a, b; Der Kiureghian and DeStefano 1991; Jang et al. 1994; Der
Kiureghian and Dakessian 1998; Ambartzumian et al. 1998; Der Kiureghian and Zhang 1999; Corr
et al. 2001; Der Kiureghian 2001a; Gardoni et al. 2002; Sudret and Der Kiureghian 2002; Song and
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Stochastic Dynamics2 with particular focus on earthquake engineering. Starting in
the 1990s his work expanded to the fields of Sensitivity Analysis and Optimiza-
tion,3 alongside with making new contributions to Statistical Analysis and Prob-
abilistic Models.4 His contributions and careful formulations also laid the ground
for a rigorous Life-Cycle and Resilience Analysis and the development of
Financial Tools for risk mitigation. A few examples of his seminal contributions
include his work on the Nataf transformation, search algorithms in First Order
Reliability Method (FORM), curvature computations in Second Order Reliability
Method (SORM), system reliability, ground motion modeling and combination
rules, linearization techniques and Bayesian analysis. These are milestones in the
discipline of risk and reliability analysis that have advanced the field and made risk
and reliability methods accessible to a broad spectrum of academics and
practitioners.

Professor Der Kiureghian’s scholarly contributions are known for their mathe-
matical elegance, precision and meticulous attention to detail. Possibly, this was an
influence of his background and passion for painting real subjects. Through his

(Footnote 1 continued)

Der Kiureghian 2003; Der Kiureghian et al. 2006, 2007; Haukaas and Der Kiureghian 2006, 2007;
Der Kiureghian and Song 2008; Yang et al. 2009; Straub and Der Kiureghian 2011) (These
references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time of writing this
introduction).
2References include (Der Kiureghian 1978; Der Kiureghian 1980a, b, 1981, 1989a, b; Wilson et al.
1981; Sackman et al. 1983; Der Kiureghian et al. 1983; Nour-Omid et al. 1983; Igusa et al. 1984;
Igusa and Der Kiureghian 1985a, b, c, 1988a, b, 1992; Smeby and Der Kiureghian 1985; Asfura and
Der Kiureghian 1986; Lin et al. 1986; Sitar et al. 1987; Der Kiureghian and Crempien 1989; Der
Kiureghian andNeuenhofer 1992; DerKiureghian andWung 1992; Chua et al. 1992; DerKiureghian
and Nakamura 1993; Zhang and Der Kiureghian 1994; Der Kiureghian 1996a, b; Ambartzumian
et al. 1996; Casciati et al. 1997; Menun and Der Kiureghian 1998; Khachian et al. 1998; Der
Kiureghian 2000;Menun andDer Kiureghian 2000a, b; Der Kiureghian et al. 2001; Hong et al. 2001,
2005; Franchin et al. 2002; Der Kiureghian and Sackman 2005; Koo et al. 2005; Der Kiureghian
2005, 2007; Song and Der Kiureghian 2006a, b; Song et al. 2007; Fujimura and Der Kiureghian
2007; Rezaeian andDerKiureghian 2008; Taniguchi et al. 2008; Der Kiureghian and Fujimura 2009;
Rezaeian and Der Kiureghian 2010; Garrè and Der Kiureghian 2010; Konakli and Der Kiureghian
2011, 2012, 2014; Rezaeian and Der Kiureghian 2012; Alibrandi and Der Kiureghian 2012; Konakli
et al. 2014) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time
of writing this introduction).
3References include (Liu and Der Kiureghian 1991b, 1993; Zhang and Der Kiureghian 1993;
Kirjner-Neto et al. 1998; Royset et al. 2001a, b, 2003, 2006; Haukaas and Der Kiureghian 2005,
2007) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time of
writing this introduction).
4References include (Der Kiureghian et al. 1997; Geyskens et al. 1998; Der Kiureghian 2001b;
Sasani and Der Kiureghian 2001; Cetin et al. 2002, 2004; Sasani et al. 2002; Gardoni et al. 2002;
Gardoni et al. 2003; Takahashi et al. 2004, Moss et al. 2006; Straub and Der Kiureghian 2008,
2010a, b; Der Kiureghian 2008; Der Kiureghian and Ditlevsen 2009; Bensi et al. 2011, 2013;
Kayen et al. 2013) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at
the time of writing this introduction).
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advising, he also created a legacy of scholars that will be future leaders in risk and
reliability analysis.

2.3 Overall Goal and Contributions of the Book

Risk and reliability analysis have gone over the past few decades from a highly
theoretical niche topic of research to a widespread, ubiquitous set of concepts and
tools. Either implicitly or, more and more, explicitly, risk and reliability analysis
are the foundation of engineering decisions and designs. They have permeated
into all engineering disciplines and they are becoming (risk analysis in particular)
a natural bridge to other disciplines outside of engineering, creating new
opportunities for interdisciplinary research that help address some of the most
pressing societal needs. Today, the state-of-the-art in risk and reliability analysis
is fragmented and presented in a multitude of papers published in different
journals, conference articles and reports. There is a need for a dedicated book
that features the latest methods and models in a unified, coherent and complete
fashion.

Some subjects within risk and reliability analysis are more mature and other ones
are emerging, prime for and in need of further developments. For the more mature
subjects, there is a need to put all of the literature into proper perspective, to
critically examine and compare the many methodologies and techniques available,
to recommend the most appropriate ones for each case, and to identify remaining
research needs. For the subjects that are less mature, there is a need to clearly define
the current state-of-the-art, to identify the critical directions going forward, and to
start the development of rigorous formulations.

The goal of this book is to present the state-of-the-art in risk and reliability
analysis in a clear, complete and coherent way. The book puts forward detailed
theoretical and mathematical treatments of the classical topics as well as of the
emerging ones. To make highly mathematical formulations accessible to students,
researchers, engineers and risk analysts, most chapters include real, complex
examples from actual engineering cases that have either motivated the development
of the new theories presented in this book or are cases ideally suited for the use and
illustration of the theory.

The book is intended for all audiences. Readers already familiar with concepts of
risk and reliability will appreciate the clarity, elegance and mathematical rigor of
the formulations. Novices to risk and reliability analysis will value the coherent
treatment of the different topics, gaining a clear overall picture of the discipline and
quickly learning from the real engineering examples. The book is designed to serve
as mandatory reading for scholars and practitioners working in and with risk and
reliability analysis.

Advancements in risk and reliability analysis can have a direct and tangible
impact on the well-being of society, specifically on the management and mitigation
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of hazards, as well as on disaster response and recovery. As a result, this book aims
at making a tangible contribution toward the well-being of society.

3 Structure and Overview of the Volume

The book is organized into six sections. After Part I with this introduction, Part II
focuses on reliability analysis, which includes a description of computational
methods and their applications to some of the most complex real-life problems.
Part III covers the subject of stochastic dynamics. As in Part II, Part III also includes
both theoretical formulations as well as applications. Part IV discusses methods for
sensitivity analysis and optimization in the context of risk and reliability analysis.
Part V focuses on statistical analysis and the development of probabilistic models.
Finally, Part VI covers life-cycle and resilience analysis as well as financial tools for
risk mitigation. While each part has a specific and distinct focus, many of the
chapters draw from methods and techniques covered in some of the other parts of
the book. Such links among chapters help understand the relations among the
different subjects.

Part II Reliability Analysis: Methods and Applications

Monte Carlo simulation has been widely used to accurately estimate the reliability
of engineering components and systems (Shinozuka 1971; Bucher 1988; Bucher
and Bourgund 1990; Ditlevsen and Madsen 1996, Au and Beck 2001). However,
for highly reliable systems the computational cost might be prohibitive (Kos-
tandyan and Sørensen 2014). Chapter 2 titled “Structural System Reliability,
Reloaded” by Jieun Byun and Junho Song provides a review of methods for
structural system reliability that are generally more efficient than Monte Carlo
simulation including: linear programming bounds, matrix-based system reliability
method, sequential compounding method, cross-entropy-based adaptive importance
sampling, selective recursive decomposition algorithm, branch-and-bound
employing system reliability bounds, and genetic-algorithm-based selective
search for dominant system failure modes. The mathematical formulation of each
method is presented along with specific applications and a discussion on its merits
and the remaining research needs.

Chapter 3 titled “Global Buckling Reliability Analysis of Slender Network Arch
Bridges: An Application of Monte Carlo-based Estimation by Optimized Fitting”
by Anders Rønnquist and Arvid Naess presents a novel Monte Carlo-based Esti-
mation by Optimized Fitting as an efficient alternative to plain Monte Carlo sim-
ulations for the reliability analysis of complex engineering systems. Rønnquist and
Naess illustrate their proposed approach considering the reliability analysis of
network arch bridges. Network arch bridges are slender bridge structures capable of
carrying the loads more efficiently than traditional bridges. However, given then
slenderness, they are vulnerable to global system buckling.
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The reliability analysis of spatially distributed systems such as road networks,
electric power networks, water and wastewater networks, and oil and gas networks
require additional considerations beyond those of component and system reliability
analysis (Kiremidjian et al. 2007; Kang et al. 2008; Guikema and Gardoni 2009;
Lee et al. 2011; Guidotti et al. 2016, 2017). Chap. 4 titled “Review of Quantitative
Reliability Methods for Onshore Oil and Gas Pipelines” by Smitha D. Koduru and
Maher A. Nessim provides a review the state-of-the-art reliability methods appli-
cable to spatially distributed systems. The authors specifically consider onshore oil
and gas pipelines. The chapter discusses common threats to pipeline integrity as
well as probabilistic models and the formulation of limit-state functions for relia-
bility analysis.

Part III Stochastic Dynamics: Methods and Applications

Estimating small probabilities of, for example, failure or first passage of random
vibration systems is one of the fundamental and computationally most challenging
tasks in risk and reliability analysis (e.g., Corotis et al. 1972; Shinozuka and
Deodatis 1991; Deodatis 1996; Gurley et al. 1996; Roberts and Spanos 2003; Lutes
and Sarkani 2004; Li and Chen 2004; Vanmarcke 2010; Mardfekri et al. 2015;
Kumar et al. 2015). Some methods have been developed for estimating these small
probabilities, but their computational efficiency is often not high enough for ana-
lyzing complex, real-life systems. Alfredo H.-S. Ang in Chap. 5 titled “An Intuitive
Basis of the Probability Density Evolution Method (PDEM) for Stochastic
Dynamics” presents a recently developed Probability Density Evolution Method
(PDEM) which is ideally suited for the stochastic dynamics analysis of large and
complex engineering systems. The chapter provides a clear theoretical explanation
of the method, its wide applicability, and its computational efficiency.

Chapter 6 titled “The Tail Equivalent Linearization Method for Nonlinear
Stochastic Processes, Genesis and Developments” by Marco Broccardo, Umberto
Alibrandi, Ziqi Wang and Luca Garrè offers a detailed review of the Tail Equivalent
Linearization Method (TELM) along with a discussion of some of the most recent
and advanced developments. TELM is a linearization method that defines a
tail-equivalent linear system (TELS) using the first-order reliability method
(FORM) and then estimates the tail of the response distribution for nonlinear
systems under stochastic inputs. The chapter discusses the advantages of TELM in
comparison with other linearization methods.

Chapter 7 titled “Estimate of Small First Passage Probabilities of Nonlinear
Random Vibration Systems” by Jun He presents a new method to efficiently esti-
mate small probabilities in random vibration problems. The proposed method
breaks down the estimation into two decoupled procedures. First, the first passage
probabilities of the scalar response processes are computed by modeling the dis-
tribution tails of the extreme values of the responses of nonlinear random vibration
systems. Then, the first passage probabilities of the vector responses are computed
using the Copula of the extreme values. After the theoretical description of the
method, the chapter presents some numerical examples that demonstrate its accu-
racy and efficiency.
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In case of a seismic event, the signals at different points of the foundation of long
structures, such as bridges, and of distributed systems, like lifelines, have different
characteristics (Somerville et al. 1991; Der Kiureghian 1996a, b; Jayaram and Baker
2010; Bocchini et al. 2016). The variation is due to a time lag in the seismic wave
propagation and in the change in the frequency content of the signals. Chapter 8
titled “Generation of Non-synchronous Earthquake Signals” by Davide Lavorato,
Ivo Vanzi, Camillo Nuti and Giorgio Monti presents two procedures to generate
asynchronous earthquake signals at different locations for a common seismic event.
One procedure uses signals recorded at a few surface points. The second procedure
generates the signals by a bedrock propagation process. The chapter includes a
comparison and evaluation of the two procedures.

Also in relation to seismic events, Chap. 9 titled “Seismic Response Analysis
with Spatially Varying Stochastic Excitation” by Katerina Konakli describes
methods for the modeling of ground-motion spatial variability, the simulation of
spatially varying ground-motion arrays and the evaluation of the response of
multiply-supported structures to differential support excitations. Methods and
concepts from stochastic time-series analysis (like coherency function, auto-power
spectral densities, response-spectrum method densities) are introduced and used to
account for the relevant uncertainties in the spatially varying characteristics of the
ground motions.

Part IV Sensitivity Analysis and Optimization

Reliability and risk information have been increasingly used in the development of
optimal design solutions (Royset et al. 2001a, b; Mathakari et al. 2007; Phoon
2008; Schüeller and Jensen 2008; Taflanidis and Beck 2008; Mahmoud and Chu-
lahwat 2016) including topology optimization (Schevenels et al. 2011; Zhao and
Wang 2014; Liu et al. 2016a, b). Chapter 10 titled “Application of CQC Method to
Seismic Response Control with Viscoelastic Dampers” by Yutaka Nakamura
introduces the complete quadratic combination (CQC) modal combination rule for
non-classically damped structures to optimize the story-wise distribution of vis-
coelastic dampers in buildings subject to seismic excitations. The chapter includes
specific design examples of the optimal distribution of viscoelastic dampers in
high-rise buildings. The examples clearly demonstrate the effectiveness of the
propose procedure.

In Chap. 11 titled “Optimal Design of Reinforced Concrete Section under
Combined Dynamic Action”, Michel Kahan describes a reliability-based technique
for the optimization of reinforced concrete sections subject to dynamic loading.
First, the technique transforms the cross-sectional forces from their original space
into the standard normal space. Then, it takes advantage of the properties of the
standard normal space to generate a simple expression of the safety margin of the
section that has a clear geometric interpretation and can be quantified by reliability
analysis.

Gradient-based solution strategies for reliability-based design optimization
problems require accurate estimates of the parameter sensitivity to convergence to
an optimal solution (Haukaas and Der Kiureghian 2007; Liu et al. 2016b). Chapter
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12 titled “FORM Sensitivities to Distribution Parameters with the Nataf Trans-
formation” by Jean-Marc Bourinet describes the sensitivity of the solution of a
reliability problem by the First Order Reliability Method (FORM) with respect to
the distribution parameters of the random inputs. The chapter also proposes an
accurate formulation to estimate such sensitivities where approximations are only
made in the numerical integration. Following the description of the theoretical
formulation, the chapter illustrates the formulation considering the problem of
stochastic crack growth.

Chapter 13 titled “Using FORM for Minimizing the Uncertain Cost of Structural
Designs” by Terje Haukaas and Stevan Gavrilovic shows how the first-order reli-
ability method (FROM) can be used to minimize the expected costs under the
assumption that the cost is a continuously differentiable function. The minimization
process uses exact derivatives of response quantities and costs with respect to
random variables (variables that describe the geometrical and loading characteris-
tics of the structure of interest) and design variables (variables defined by the
minimization of the cost). The chapter includes both a theoretical presentation of
the minimization process and a detailed example.

Part V Statistical Analysis and Probabilistic Models

The development of accurate and efficient probabilistic models is an integral part of
risk and reliability analysis. Models are needed in risk and reliability analysis to
predict quantities of interest accounting for the relevant uncertainties (Kareem and
Gurley 1996; Gardoni et al. 2002; Der Kiureghian and Ditlevsen 2009; Bayraktarli
et al. 2011; Murphy et al. 2011). Statistical analysis, in particular Bayesian infer-
ence, has been an invaluable tool to develop models based on the available
information (Gardoni et al. 2002, 2003, 2009; Choe et al. 2007, 2008; Bolduc et al.
2008; Tabandeh and Gardoni 2015). Chapter 14 titled “Model Checking After
Bayesian Inference” by Matteo Pozzi and Daniele Zonta discusses how to assess the
accuracy of the assumptions under which a model is developed by statistical
inference. The chapter puts forward a novel Bayesian model comparison and
compares it with alternative approaches typical of a frequentist approach to sta-
tistical analysis. The chapter starts with a theoretical discussion of the methods and
then gives specific examples that illustrate the benefits of Bayesian model
comparison.

Bayesian inference has been used in the identification of structural systems and
damage detection using field measurements (Beck and Katafygiotis, 1998; Huang
et al. 2012, 2015a). The calibrated properties can then be used to develop accurate
estimates of the system reliability (Huang et al. 2009, 2015b). Chapter 15 titled
“Batch and Recursive Bayesian Estimation Methods for Nonlinear Structural
System Identification” by Rodrigo Astroza, Hamed Ebrahimian and Joel P. Conte
presents a Bayesian probabilistic framework for the calibration of finite element
(FE) models of structural systems. The framework uses batch and recursive
methods to estimate inertia, geometric, and constraint properties as well as prop-
erties in the material constitutive models based on input-output dynamic data
recorded during earthquake events. Following a damaging event, the updated FE
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model can be used to detect the damage in the structure. After the detailed pre-
sentation of the theory, the chapter includes an example considering a five-story,
two-by-one bay, reinforced concrete frame building subject to seismic excitation.

During the construction and operation of engineering systems, information on
their properties and performance becomes available through monitoring (You et al.
2014) and other means of observation (Gardoni et al. 2007). Such information can
be used to update predictions of the system’s reliability through a Bayesian analysis
(Huang et al. 2015a, b). Chapter 16 titled “Reliability Updating in the Presence of
Spatial Variability” by Daniel Straub, Iason Papaioannou and Wolfgang Betz
presents a Bayesian framework to update the reliability of engineering systems that
depend on spatially varying quantities treated as random fields. The chapter uses the
Expansion Optimal Linear Estimation (EOLE) method to discretize the random
fields. The chapter includes both a rigorous description of the general probabilistic
formulation as well as a detailed illustrative example on the reliability of founda-
tions resting on spatially varying soil.

Bayesian Network methods have gained significant importance in the modeling of
infrastructure systems. However, their computational cost rapidly increases as network
become realistic. Chapters 17 and 18 propose alternative solutions that significantly
reduce the computational costs. Chapter 17 titled “Bayesian Networks and Infras-
tructure Systems: Computational and Methodological Challenges” by Francesco
Cavalieri, Paolo Franchin, Pierre Gehl and Dina D’Ayala considers Bayesian Network
methods for the seismic assessment of large and complex infrastructure systems. In
addition to proposing a strategy to reduce the computational costs, the chapter also
tackles the need for assessment measures that includes flow-based performance
indicators (which are typically not included Bayesian Network methods). The chapter
includes an application to a realistic water-supply network.

Chapter 18 titled “Bayesian Network Methods for Modeling and Reliability
Assessment of Infrastructure Systems” by Iris Tien presents novel compression and
inference algorithms the can be used to address the need for memory storage which
increases exponentially as the size and complexity of the system increases. The
chapter also introduces several heuristics which, combined with the compression
and inference algorithms, are shown to significantly reduce the memory storage
needs and computation time cost.

Kriging interpolation has been increasingly used to generated probabilistic
models in several fields (e.g., Taflanidis et al. 2016). Chapter 19 titled “Kriging
Interpolation Strategy for Finite Element-based Surrogate Responses of DCB
Delamination Tests” by Salvatore Sessa and Nunziante Valoroso presents a Kriging
interpolation technique for computing the response of Finite Element models. The
chapter describes the theoretical formulation of Kriging techniques and gives a clear
example of their accuracy and computational efficiency by analyzing the bending
behavior of a cantilever beam.

Part VI Life-Cycle and Resilience Analysis and Financial Tools

Life-cycle and resilience analysis can be used for informed decision making, hazard
mitigation, and planning (Val et al. 2000; Kong and Frangopol 2003; Van Noortwijk
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and Frangopol 2004; Pachakis and Kiremidjian 2004; Streicher and Rackwitz 2004;
Biondini et al. 2006; Maes and Faber 2007; Corotis 2009; Williams et al. 2009;
Kumar et al. 2009; Cha and Ellingwood 2012; Kumar and Gardoni 2014; Gardoni
et al. 2016a, b; Giuliani et al. 2016; Lin et al. 2016; Narasimhan et al. 2016; Padgett
and Kameshwar 2016; Pilkington and Mahmoud 2016). Chapter 20 titled
“Life-cycle Analysis of Engineering Systems: Modeling Deterioration, Instanta-
neous Reliability, and Resilience” by Gaofeng Jia, Armin Tabandeh and Paolo
Gardoni proposes a rigorous stochastic formulation for the Life-Cycle Analysis
(LCA) of engineering systems. The formulation includes the modeling of both
deterioration processes and repair/recovery processes that define the life-cycle of
engineering systems. The chapter introduces methods to compute performance
measures like instantaneous reliability, resilience, availability, operation cost and
benefits. An illustration of the proposed formulation is presented considering the
modeling of the life-cycle of an example bridge structure.

Chapter 21 titled “Fragility Curves of Restoration Processes for Resilience
Analysis” by Gian Paolo Cimellaro presents a novel formulation for the evaluation
of restoration fragility functions. Restoration fragility functions are defined as the
conditional probability that a restoration process will exceed a specified state for a
given extent of damage. The chapter includes a theoretical discussion of the pro-
posed method as well as an example in which restoration fragility functions are
developed for a critical facility following an earthquake. The example considers
two cases, one when an emergency plan is in place and one when there is no
emergency plan.

Chapter 22 titled “ADecision Support Tool for Sustainable and Resilient Building
Design” by Umberto Alibrandi and Khalid M. Mosalam presents an integrated
approach for building design that brings together safety, resilience and sustainability.
A multi-attribute decision tool is combined with the Performance-Based Engineering
(PBE) approach to create rankings of different design alternatives. In the integrated
approach, a Bayesian analysis is used to incorporate new information as it becomes
available. The chapter includes a comprehensive presentation of the proposed inte-
grated approach along with a specific example that considers an office space.

Building on the results of risk and reliability analysis, Chapter 23 titled “Inno-
vative Derivatives to Drive Investment in Earthquake Protection Technologies” by
Yuji Takahashi presents new financial derivatives (i.e., contracts that derive their
values from the performance of the underlying financial entity) that promote
investments in earthquake mitigation strategies. The chapter presents a rigorous
formulation to price derivatives that uses state-of-the-art seismological models. The
chapter includes a clear description of the structure of the proposed security as well
as a specific example of pricing based on credit default swap (CDS) pricing.
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Structural System Reliability, Reloaded

Jieun Byun and Junho Song

Abstract Over the last four decades, structural system reliability (SSR) has been
an active research topic as engineering systems including structures and infras-
tructure networks become more complex, and the computational power has been
remarkably advanced. Among many efforts to advance SSR technologies, the
research by Prof. Armen Der Kiureghian in the early 2000s is considered to have
built critical pathways to the development of next-generation SSR methods by
revisiting the topic of SSR. As demonstrated in Der Kiureghian (Structural system
reliability, revisited. Proceedings, 3rd ASRANet International Colloquium, Glas-
gow, UK, July 10-12, 2006), his research efforts led to new insights and perspec-
tives on critical topics of structural system reliability. This has encouraged
researchers to perform a variety of research activities to develop new SSR tech-
nologies that can address challenges and needs in risk management of real-world
systems. This chapter provides a review on such efforts to reload the research
community with SSR technologies, which were made possible by the revisit. The
chapter reviews the following SSR methods: linear programming bounds,
matrix-based system reliability method, sequential compounding method,
cross-entropy-based adaptive importance sampling, selective recursive decompo-
sition algorithm, branch-and-bound employing system reliability bounds, and
genetic-algorithm-based selective search for dominant system failure modes. For
each of the reviewed methods, their main concepts, applications and follow-up
research activities are presented along with discussions on merits, remaining
challenges, and future research needs.
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1 Introduction

System reliability is defined as the probability that a system remains available or
functional despite the likelihood of component failures (Der Kiureghian 2006).
There is a pressing research need for formal and accurate treatment of system
reliability as the concept and importance of safety have been highlighted throughout
the world. However, there are innumerable roadblocks for effective system relia-
bility analysis especially because systems are becoming more complex and larger as
the technological demands from the societies increase rapidly. Moreover, in such
complex systems, there exist significant statistical dependence between component
failure events characterized in terms of physical members, failure modes, failure
locations, and time points of failure occurrences. These technical challenges make
system reliability analysis more difficult than that of a component event.

For the last four decades, there have been active research efforts to overcome the
aforementioned challenges in structural system reliability (SSR) analysis. One of
the most noteworthy efforts was made by Prof. Armen Der Kiureghian, who built
critical pathways to next-generation SSR methods by revisiting the topic of SSR in
the early 2000s via his research (Der Kiureghian 2006). As demonstrated in his
paper, his efforts led to new insights and perspectives on the crucial topic of
structural system reliability especially with regard to system reliability formula-
tions, system reliability updating, component importance measures, parameter
sensitivities of system reliability, and reliability of systems in which component
failures are described by stochastic processes or show significant level of statistical
dependence. This motivation has encouraged researchers to perform a variety of
new research activities, which eventually reloaded the research community with
new SSR technologies to address challenges and needs in risk management of
real-world systems.

New SSR methods and the recent growth of computational power greatly
advanced the capabilities of SSR analysis. However, the advent of highly complex
structures and infrastructure systems demanded by today’s society still hampers
accurate and rapid assessment of reliability, which introduces new challenges in
SSR. This chapter aims to summarize challenges addressed by new SSR methods
since the revisit, and identify future challenges and needs based on today’s SSR
technological demands and capabilities.

In Sect. 2, four SSR methods developed to address essential technological needs
in SSR are discussed—the linear programming bounds, the matrix-based system
reliability method, the sequential compounding method, and cross-entropy-based
adaptive importance sampling. In Sect. 3, three SSR methods developed to satisfy
technological needs arising for complex systems are presented—selective recursive
decomposition algorithm, branch-and-bound method employing system reliability
bounds, and genetic-algorithm-based selective search scheme for dominant failure
modes. Lastly, Sect. 4 provides a summary of the technological needs for SSR
discussed in this chapter and how the reviewed SSR methods have satisfied the
needs. This chapter is concluded by discussing future reloading needs.
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2 Methods Developed to Address Essential Needs in SSR

There are myriad types of systems for which SSR analysis needs to be performed.
In performing SSR analysis for those general systems, the followings are identified
as essential needs for SSR methods: (1) Generality: SSR methods applicable to
general systems are desired; (2) Flexibility: SSR methods capable of incorporating
inequality or incomplete information about components are needed; (3) Inference:
Through SSR analysis, it is desirable to compute conditional probabilities and to
identify important components in a system; (4) Sensitivity: To facilitate
decision-making process regarding system reliability, one may wish to compute
parameter sensitivities of system reliability through an SSR analysis; (5) Efficiency:
SSR methods should be computationally efficient enough; and (6) Scalability: As
structures and infrastructure networks become larger, it is desirable to have SSR
methods that can handle a large number of components. Various SSR methods have
been developed for last decades to meet these needs using the available compu-
tational resources. Although remarkable developments in computational power has
greatly enhanced the capability of SSR analysis, practical systems are often too
complex and large to be analytically examined.

To overcome these challenges, SSR methods need to be developed based on
suitable strategies that can consider limited information on hand, employ efficient
analysis schemes, and introduce proper approximation schemes. Four of recently
developed SSR methods are reviewed in this chapter in terms of their strengths and
limitations in addressing the six essential needs described above. The evaluation
results are summarized in Table 1. In the table, “O” indicates fulfillment of the
corresponding need by the SSR method while “*” indicates an indirect fulfillment is
possible.

2.1 Bounds on System Reliability by Linear Programming
(LP Bounds)

In general, system reliability is estimated based on information of component
events such as their marginal failure probabilities and statistical dependence
between component events. However, complete information is rarely available in

Table 1 Evaluation of SSR methods discussed in Sect. 2 in terms of six essential needs

Generality Flexibility Inference Sensitivity Efficiency Scalability

LP
bounds

O O O O

MSR O O O O
SCM O * O O O
CE-AIS O * O O
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practical SSR problems. To maximize the use of available information, Song and
Der Kiureghian (2003a) proposed a methodology to obtain lower and upper bounds
of system failure probability using linear programming, termed “LP bounds”
method.

Figure 1 illustrates the main idea of the LP bounds method. If the system failure
event is divided into basic mutually exclusive and collectively exhaustive (MECE)
events, the system failure probability can be calculated by summing up the prob-
abilities of the basic MECE events belonging to the system event of interest. If each
of n component events has 2 possible states, e.g. “failure” and “functioning,” there
exist a total of 2n basic MECE events. For example, when there are three com-
ponent events, the sample space is decomposed to 23(= 8) basic MECE events as
illustrated by a Venn diagram in Fig. 1. The probability of a general system event
then can be described as a linear function of the probabilities of the basic MECE
events. For example, the probability of the system event Esys = E1 ∩E2ð Þ∪E3,
represented by the shaded area in Fig. 1, can be calculated by summing up the
corresponding five basic MECE events in the Venn diagram.

This linear relationship between the probabilities of the basic MECE events and
the system probability is described by the equation cTp where the elements in
“event vector” c are 1 when the corresponding MECE event is included in the
system event and 0 otherwise. Meanwhile pi, the ith element in the “probability
vector” p, denotes the probability of the ith MECE event. To obtain the bounds of
system reliability, the objective function of LP is defined by the function cTp as
written in the lower box of Fig. 1. There are two types of constraints on the LP: one
set is from the probability axioms while the other represents available information
on component events and their statistical dependence, given either in the form of
equality or inequality equations. Once the objective function and appropriate
constraints are defined, one can obtain the bounds of the system-level probability of
interest using an LP algorithm.

Fig. 1 Illustration of LP bounds method and a system example with three components
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The LP bounds method can deal with any type of system events, e.g. parallel or
series systems, general systems consisting of cut sets and link sets (Song and Der
Kiureghian 2003a, 2003b, 2005; Jimenez-Rodriguez et al. 2006), and can incor-
porate various types of available information, e.g. an incomplete set of component
probabilities or inequality constraints on component probabilities. Therefore, the
essential needs for Generality and Flexibility of SSR are satisfied as noted in
Table 1. Using the LP bounds method, the bounds on various quantities such as
component importance measures (Song and Der Kiureghian 2005), conditional
probabilities given observed events and parameter sensitivities of the system failure
probability (Der Kiureghian and Song 2008) can be calculated as well. Therefore,
although the results are given as bounds, the LP bounds method is considered to
meet Inference and Sensitivity criteria as indicated in Table 1.

The LP bounds method has proved to be superior to existing bounding formulas
(Boole 1916; Ditlevsen 1979; Hunter 1976; Kounias 1968; Zhang 1993) since the
obtained bounds are guaranteed to be the narrowest ones under the available
information regardless of the ordering of the components, and can use inequality
information and incomplete set of probabilities to narrow the bounds. However,
numerical problems may occur in running LP algorithms in the case that the bounds
are too narrow or the number of components is large. Due to these current limits,
the Efficiency and Scalability criteria are shown as blank in Table 1.

It is noted that there have been research efforts to overcome the scalability issue
of the LP bounds method. A multi-scale analysis approach was combined with the
LP bounds method to reduce the size of LP problems (Der Kiureghian and Song
2008). Chang and Mori (2013) proposed a relaxed linear programming
(RLP) bounds method to overcome the scalability issue by introducing an universal
generating function. An alternative strategy to reduce the number of constraints in
the RLP bounds was later proposed, and a decomposition scheme of a system based
on failure modes has been developed so that the LP bounds approach is applicable
to large systems (Chang and Mori 2014). A small-scale LP (SSLP) approach was
also developed to reduce the scale of LP problems formulated for parallel and series
systems (Wei et al. 2013). The SSLP approach uses a new boundary theory so that
the LP model increase linearly with respect to the number of components. This
approach was applied to a structural system with multiple failure modes where both
random and fuzzy inputs are present.

2.2 Matrix-Based System Reliability (MSR) Method

There are various types of systems such as parallel, series, cut set, and link set
systems. Since there are generally multiple failure events in a system and their
configurations are all different, system probability assessment using a direct Boo-
lean formulation is usually impractical. The MSR method provides a systematic
framework to facilitate analytical evaluation of general system reliability (Kang
et al. 2008; Song and Kang 2009). By adopting simple matrix calculations, the
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probability of a system event consisting of multiple component events can be
estimated in a straightforward manner. Such simplification is obtained by separating
two main parts of system reliability assessment, i.e. system event description and
probabilities of events.

Figure 2 illustrates the main calculation procedures and outputs of the MSR
method. By decomposing the system event into basic MECE events (as done for the
LP bounds method), the probability of a system event is calculated by summation of
the probabilities of the basic MECE events belonging to the system event. The
event vector c is a vector that describes the system event. When the system state is
determined by the binary states of its components, the vector c contains binary
terms, i.e. 0 and 1. The probability vector p is a column vector where each element
is the probability of corresponding MECE event. The probability of the system
event then can be calculated by simply the inner product of the two vectors, i.e. cTp.

When there exists statistical dependence between component events, the prob-
ability can be estimated by the integral in the bottom box of Fig. 2 by use of the
total probability theorem. In this case, common source random variables (CSRV)
x and their joint probability density function (PDF) fX xð Þ need to be identified such
that the component failures are conditionally independent given the outcomes of x,
and thus the probability vector p can be constructed by use of the conditional failure
probabilities given x through the procedure originally developed for independent
components. Component reliability analysis methods such as the first- or
second-order reliability methods (See a comprehensive review in Der Kiureghian
2005) can be used to compute the failure probabilities of the components and their
parameter sensitivities (Kang et al. 2012). Since the MSR method does not require
running an additional algorithm as the LP bounds method, and can provide a
straightforward reliability analysis formulation given any types of systems, Effi-
ciency criterion in Table 1 is fulfilled.

Fig. 2 Main calculation procedures and outputs of the MSR method
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The MSR method is applicable to a wide range of system types, i.e. series,
parallel, cut set, and link set systems, which satisfies the needs for Generality. This
general applicability has been demonstrated by many examples of (1) structural
systems, e.g. truss systems, a bridge pylon system, a combustion engine, a hardware
system of train and Daniels systems, and (2) infrastructure networks, e.g. bridge
networks, a gas distribution system, complex slopes (Xie et al. 2013). To extend the
usage of the MSR method to systems whose performance is evaluated in terms of a
continuous measure, i.e. non-discrete states, Lee et al. (2011) introduced the con-
cept of a quantity vector q to replace the event vector c. The elements of the
quantity vector are defined as the value of the continuous measure of the system
performance for the corresponding combination of the component states (Lee et al.
2011). Meanwhile, Byun and Song (2016) proposed to modify the elements of the
event vector c into binomial terms to deal with k out of N systems (Byun and Song
2016).

The MSR method is able to compute conditional probability given observed or
assumed events, component importance measure (Song and Ok 2010) and
parameter sensitivity of system failure probability (Song and Kang 2009). These
useful by-products can be obtained through simple matrix calculations. As illus-
trated in Fig. 2, to calculate the component importance measure, the new event
vector c0 is introduced without modifying the probability vector p. On the other
hand, parameter sensitivity of system failure probability can be obtained by
replacing p with the sensitivity of the component failure probabilities without
modifying the vector c. Inference and Sensitivity criteria, therefore, are satisfied by
the MSR method as shown in Table 1.

The MSR method requires exhaustive description of the likelihood and statistical
dependence of component failure events, and thus cannot utilize inequality type
information or an incomplete set. Therefore, the Flexibility criterion in Table 1 is
not marked. However, in such cases, the LP bounds method can be used instead
since the two methods share the same mathematical model (Kang et al. 2008;
Huang and Zhang 2012). The criterion of Scalability is not marked either in Table 1
because the size of the vectors increases exponentially as the number of the com-
ponents increases. The size issue can be alleviated though by adopting a multi-scale
approach. For example, Song and Ok (2010) decomposed a large system into
several subsystems to introduce multiple scales. At the lower-scale, the failure
probabilities of the subsystems and their statistical dependence are evaluated. Using
the results of the lower-scale analysis, the failure probability and parameter sen-
sitivities of the whole system are computed at the upper-scale analysis. An
important merit of the MSR method is its straightforward evaluation of the
parameter sensitivity. Since this feature facilitates the use of gradient-based opti-
mizer for reliability based design optimization, the MSR method has been applied
to develop efficient system reliability based design optimization algorithms
(Nguyen et al. 2009).
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2.3 Sequential Compounding Method (SCM)

Although computation of multivariate normal integrals is often needed in SSR, no
closed form solution is available. Accordingly, it is challenging to estimate the
system reliability when such integrals are present in the formulation, particularly in
the cases that components have strong statistical dependence; the size of the system
is large; or the definition of the system event is complex. To properly approximate
the integrals and to enhance the computational efficiency, a sequential com-
pounding method (SCM) was proposed (Kang and Song 2010).

The SCM sequentially compounds a pair of component events in the system
until the system is merged into one super-component as illustrated by an example in
Fig. 3. At each compounding step, the probability of the new compound event, e.g.
the super-component “A” during the first step in the example, and the correlation
coefficients between the new compound event and the other remaining events, e.g.
the correlation coefficients for the pairs (A, 3), (A, 4), and (A, 5), are identified for
the next compounding sequences. To facilitate the calculation of correlation coef-
ficients, an efficient numerical method was also developed (Kang and Song 2010).
The SCM is applicable to any type of systems since it simply compounds a pair of
adjacent components coupled by intersection or union.

The SCM shows superior accuracy and efficiency for a wide range of system
types as demonstrated by numerous series, parallel and cut-set system examples
with various sizes and correlation coefficients (Kang and Song 2010), topology
optimization of lateral bracings of a building (Chun et al. 2013a), and system
reliability analysis of rock wedge stability (Johari 2016). Hence, the SCM method
seems to satisfy the Generality as indicated in Table 1. An alternative approach was
later proposed to adopt a recursive approach to the SCM in order to rapidly estimate
the connectivity between two nodes (Kang and Kliese 2014). Efficiency and
accuracy of the proposed approach were demonstrated by applications to real-world
power and water networks. On the other hand, the Flexibility criterion is not sat-
isfied since the SCM cannot incorporate inequality information or incomplete sets.
In Table 1, the Inference criterion is not marked because conditional probabilities
cannot be directly evaluated by SCM. However, one could estimate conditional
probabilities by evaluating the system event probabilities that appear in the
numerator and denominator of the conditional probability separately by use of the
SCM.

Fig. 3 Example of sequential compounding by SCM
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The SCM has been further developed to evaluate the parameter sensitivity of
system reliability as well (Chun et al. 2015a, b). The method can analytically
compute the parameter sensitivity of the probabilities of series, parallel and general
systems. The method was successfully applied to topology optimization of struc-
tures under system reliability constraints including first passage probability (Chun
et al. 2015b) for which parameter sensitivities of a large-size series system is
required. It is noted that the SCM also satisfies the criteria of Efficiency and
Scalability since the proposed sequential compounding processes are straightfor-
ward and computationally efficient even for large-scale systems.

2.4 Cross-Entropy-Based Adaptive Importance Sampling
(CE-AIS)

When the failure domain in the random variable space is so complex that the
analytical estimation of the probability is infeasible, sampling-based methods can
be used as good alternatives for component and system reliability analysis.
Although the Monte Carlo simulation (MCS) is the most straightforward approach
applicable to all system problems, the computational cost is sometimes over-
whelming especially when the probability of the event is low. Importance sampling
(IS) has been developed to alleviate the computational cost of simulation by using a
more efficient sampling density located at relatively important regions, which are
usually identified by additional reliability analysis. To find a near-optimal impor-
tance sampling density without such additional computational efforts,
cross-entropy-based adaptive importance sampling (CE-AIS) (Rubinstein and
Kroese 2013) minimizes Kullback-Leibler cross entropy, which measures the dif-
ference between the true optimal sampling density and a sampling density model
being updated by pre-samplings.

Kurtz and Song (2013) proposed to adopt a Gaussian mixture as a sampling
density model in the CE-AIS approach, and developed closed-form updating rules
to find the near-optimal sampling density by a few rounds of small pre-sampling.
CE-AIS employing a Gaussian mixture (CE-AIS-GM) has proved to be efficient
and accurate, i.e. requiring far less samples to achieve the target coefficient of
variation than crude MCS or CE-AIS using a unimodal distribution model
(Rubinstein and Kroese 2013). Figure 4 demonstrates how Gaussian mixture
models converge to near-optimal sampling densities by the CE-AIS-GM algorithm.
The black lines in the figures represent the limit-state surface of a series system
problem. The contours in the far left figures represent the initial GM sampling
densities, and after few rounds of pre-sampling, the sampling densities converge
into critical regions as noted in the far right figures in Fig. 4. It is noteworthy that
even when an excessive number of sampling densities are originally employed in
the Gaussian mixture model, densities tend to merge to form a Gaussian mixture
model concentrating only on the important areas.
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As noted in Table 1, CE-AIS-GM is applicable to general systems, and its
computational performance is not affected by the level of probability and the shape
of limit-state functions (Kurtz and Song 2013). Efficiency and Scalability criteria
are also accomplished. The method’s wide applicability was demonstrated by
numerical examples including a parabola limit-state function and reliability anal-
yses of systems such as parallel, series and general systems. CE-AIS-GM was also
applied to practical issues such as seismic reliability analysis (Choi and Song 2016)
and time-dependent reliability of structural system (Yang et al. 2015). Although
CE-AIS-GM is not able to directly estimate conditional probabilities, the criterion
of Inference is considered to have been partially fulfilled in a sense that the GM
model parameters obtained during pre-sampling process are helpful in identifying
important areas in random variable space. The method is yet able to incorporate
available information in a flexible manner or evaluate parameter sensitivities.

While CE-AIS-GM shows good performance for systems including up to about
50 random variables, the method does not work well in the random variable spaces
with higher dimensions. This is because most of the probability volume is highly
concentrated around the surface of the hypersphere with a certain radius in a high
dimension random variable space. To be able to sample in the so-called “important
ring” region, a CE-AIS method employing a von Mises-Fisher mixture model
(CE-AIS-vMFM) was proposed (Wang and Song 2016). The performance of
CE-AIS-vMFM was successfully demonstrated by reliability analyses of both
component and system events which included up to 300 random variables. There
has been another effort to resolve the difficulty in high-dimensional systems by
integrating CE-AIS with Markov chain Monte Carlo methods (Chan and Kroese
2012).

Fig. 4 Convergence (from left to right) of Gaussian mixture models with four (top) and seven
(bottom) densities into near-optimal importance sampling densities by cross-entropy-based
adaptive importance sampling for a series system example
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3 Methods Developed to Address Needs in SSR Analysis
of Complex Systems

For systems whose system-level performance or state are determined mainly by the
complex relationship and arrangement of their components, it is crucial to identify
the combinations of component states leading to system failure or survival, and
interaction between the states of components. While the system failure may not be
observed even after preceding failures of several component events for a redundant
system, sometimes a small number of critical components would cause the system
to fail promptly. In this sense, for effective SSR analysis of complex systems,
proper considerations need to be made to (1) handle cascading failures in systems:
the sequence of multiple component failure events leading to the system-level
failure; (2) identify critical failure modes: cut sets and link sets with dominant
contributions to the system failure; and (3) obtain updated or conditional proba-
bilities for inference. Satisfying these needs would not only make the estimation of
reliability of complex systems possible, but also provide a deep insight for the
system, which is useful for the purpose of maintenance planning or design of
structural systems.

In this regard, this section introduces three SSR methods, i.e. selective recursive
decomposition algorithm, branch-and-bound method employing system reliability
bounds, and genetic-algorithm-based selective searching technique. Their applica-
tions, further developments, strengths, and limitations are also discussed. Table 2
summarizes needs regarding SSR analysis of complex systems, satisfied by the
reviewed methods.

3.1 Selective Recursive Decomposition Algorithm (S-RDA)

While the LP bounds method aims to overcome the difficulty aroused from
incomplete information, another prevalent difficulty in SSR analysis of complex
and large systems is caused by the infeasible computational cost of reliability
calculations needed for numerous system failure scenarios. Therefore, identifying
only a fraction of failure or survival events with dominant contributions to the

Table 2 Evaluation of SSR methods discussed in Sect. 3 in terms of needs regarding SSR
analysis of complex systems

Cascading
failure

Critical failure
modes

Updating/inference

S-RDA O O
B3 method O O O
GA-based selective
Search

O O
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system failure probability or reliability is a crucial scheme which analytical relia-
bility methods should pursue to alleviate the computational effort.

Based on graph theories, the recursive decomposition algorithm (RDA) was
developed as a non-simulation-based method for SSR analysis of networks. RDA
sequentially identifies disjoint link sets and cut sets until the desired width of bound
is attained (Liu and Li 2009; Li and He 2002). Searching for disjoint link sets and
cut sets is advantageous because the upper and lower bounds of probability can be
obtained by simply summing up the probabilities of identified sets. The bounds of
system reliability R and system failure probability F are then obtained by

∑
nL

i=1
P Lið Þ≤R≤ 1− ∑

nC

i=1
P Cið Þ ð1aÞ

∑
nC

i=1
P Cið Þ≤F ≤ 1− ∑

nL

i=1
P Lið Þ ð1bÞ

where P Lið Þ and P Cið Þ are the probabilities of ith link set Li and cut set Ci, and nL
and nC are the numbers of identified link sets and cut sets. RDA terminates the
search of new link sets and cut sets when the bounds become narrow enough.

Lim and Song (2012) proposed a selective RDA (S-RDA), which greatly
improves the performance of the original RDA by preferentially identifying critical
disjoint link sets and cut sets whose probabilities are higher than others (Lim and
Song 2012). Figure 5 illustrates the searching scheme of the RDA using a simple
network example and compares the original RDA and S-RDA. For a given network
or subnetwork, a link set is searched first. For the example in Fig. 5, there are three
possible link sets, and suppose the second one (yellow box) is selected to be
decomposed at the next step. As mentioned above, S-RDA selects the link set with
the highest probability, i.e. critical link set while the original RDA selects the ones
with the shortest path. The probabilities of such selected link sets are summed up to
update the lower bound of the system reliability (Eq. 1a) or the upper bound of the
system failure probability (Eq. 1b). Among the subgraphs generated by the
decomposition of the selected link set (three in the example), a subgraph indicating
the failure of system is classified as a cut set and its probability is added to update the
upper bound of the system reliability (Eq. 1a) or the lower bound of the system
failure probability (Eq. 1b). Then one of the subgraphs that are not cut sets is
selected for the next decomposition. For this subgraph selection, S-RDA aims to
identify a subgraph with the most likelihood of occurrence while the original RDA
relies on the preset numbering choice of nodes or links. The identification of link sets
and cut sets continues until the desired width is achieved for the bounds in Eqs. (1a)
and (1b). The table in Fig. 5 compares two different searching strategies. Because
S-RDA takes into account the probabilities of the sets during the decomposing
scheme, the number of sets required to achieve the convergence of the bounds is
drastically reduced. The efficiency of S-RDA was demonstrated by applications to
large and complex systems such as a gas transmission network (17 nodes and 20
links) and water distribution network (50 nodes and 78 links) (Lim and Song 2012).
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Although S-RDA considerably alleviates the computational cost of probability
estimation, the algorithm still has an intrinsic limitation as the number of sets to
identify increases exponentially as the number of components increases. To extend
the use of S-RDA to even larger systems, Lim et al. (2015b) proposed a
clustering-based multi-scale approach using S-RDA. This approach divides a sys-
tem into several clusters by use of a spectral clustering algorithm. The number of
clusters is determined by monitoring the variation of the eigenvalues of the graph
Laplacian matrix, and components are grouped in a way that the number of links
connecting nodes in different clusters is minimized while the number of nodes in
each cluster is well distributed. The accuracy of this multi-scale approach is not
deteriorated by considering the statistical dependence between the generated clus-
ters termed as “super-components.” If the number of clusters is still too large for
S-RDA, the system can be additionally clustered to have more than two scales. By
using such a hierarchical clustering approach, S-RDA can be applied to systems
with even larger number of components. The proposed methodology was adopted
to several practical systems with up to 257 components: 59 nodes and 99
bi-directional links.

SSR analysis employing S-RDA can deal with networks whose failure is defined
in terms of the connectivity between two nodes, e.g. source and terminal nodes in
gas distribution network. However, the approach does not consider cascading
failures. However, conditional-probability-based importance measures and condi-
tional probabilities given observed or assumed events can be readily computed
using S-RDA. The bounds of the measures are obtained as a by-product based on
the probability of critical disjoint sets identified for reliability analysis. The bounds
are proved to be narrow enough to observe the relative importance of components
in numerical examples. Recently, a lifeline network retrofitting prioritization
scheme was developed based on multi-criteria optimization, in which the

Fig. 5 Searching scheme of RDA and comparison between the original RDA and S-RDA
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conditional-probability-based importance measure of the network components is
adopted as one of the decision-making criteria (Lim et al. 2015a).

3.2 Branch-and-Bound Method Employing System
Reliability Bounds (B3 Method)

When a series of component failures are observed, their sequence is generally an
important factor that characterizes the system failure. Particularly for an indeter-
minate structure, the failures of certain members cause re-distribution of forces in
the structural system, which affects the likelihood and sequence of the cascading
failures. Different contributions of preceding failed members affect whether the
structure would be able to withstand more external impacts or would collapse.
There is a need for a reliability analysis method to reflect the importance of the
sequence of events. For such a reliability analysis concerning fatigue-induced
cascading failures, a branch-and-bound method employing system reliability
bounds, termed B3 method was developed (Lee and Song 2011). The method
sequentially sorts out the most probable sequences leading to the system-level
failure. The method was designed such that the identified sequences are disjoint to
each other, and thus the lower and upper bounds are updated simply by adding up
the probabilities of the sequences. This method is categorized as a bounding method
just as LP bounds (Sect. 2.1) and S-RDA (Sect. 3.1), and in the same manner as
S-RDA, the bounds can be rapidly converged by identifying the sequences with
higher probabilities preferentially and be narrowed by summation of the sequences
due to their disjoint relationship (Lee and Song 2011).

Figure 6 illustrates the search scheme of the B3 method and how the system
reliability bounds are narrowed as the search process proceeds. The search scheme
starts from the initial node that contains all possibilities, and thus the node contains
the probability of the sample space, i.e. 1. To “branch out” the node, a structural
analysis is first performed to find the probabilities of the failure of each component
based on the force distribution represented by the current node. Once a node is
branched-out, the node becomes inactive, i.e. the probability of the node is dis-
tributed to its child nodes, and is marked by a dotted edge. The scheme generates
one more branch than the remaining unbroken components. This additional node is
the white circle including 0 shown in Fig. 6. This node implies that no additional
failures are observed within the inspection period Ts and the upper bound is thus
decreased by the probability of the white node. Next, among all active nodes, the
node with the highest probability is selected for the next branching-out. If the
structural analysis of the selected node indicates a system failure, the node is
marked black and listed as one of the failure sequences leading to the system
failure. The lower bound of the system failure probability is increased by the
probability of the black node. This search scheme continues until sufficiently nar-
row bounds are obtained.
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The B3 method showed superb performance compared to existing
branch-and-bound methods (Murotsu et al. 1982; Guenard 1984) since the proba-
bilities of identified sequences tend to decrease monotonically and the upper bound
can be also obtained along with the lower bound which was not available in existing
methods. There is another advantage that each structural analysis contributes to
narrowing the bounds, which is especially beneficial when the computational cost is
dominated by high-fidelity structural analyses than reliability assessment. The
superiority of B3 method was demonstrated by a three-dimensional truss structure
(Lee and Song 2011).

The B3 method was later combined with finite-element-based reliability analysis
for applications to continuum structures (Lee and Song 2012). To this end, the
limit-state formulations are modified to incorporate crack-growth analysis using an
external software package, and an additional search-termination criterion is intro-
duced. Lee and Song (2013) also proposed an inspection-based reliability updating
scheme using B3 method for both discrete and continuum structures. Quintana et al.
(2014) employed the B3 method to combine system reliability analysis, and “failure
mode effects and criticality analysis” (FMECA) for quantitative classification of
structural hot spots.

Since the B3 method tends to identify sequences of component failure events in
the decreasing order of the probabilities, Table 2 indicates that the method can
consider cascading failures and identify dominant failure modes. The method is
considered to have inference capability as well since the updating method (Lee and
Song 2013) can compute conditional probabilities given information obtained from
the inspections, both equality and inequality-type events. Although the B3 method
was originally developed for fatigue-induced failures in a system, the search
scheme can be extended to other types of cascading failure phenomena by
re-formulating the reliability calculations of the failure sequences.

Fig. 6 Procedure for identifying critical failure sequences and narrowing bounds in B3 method
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3.3 Genetic-Algorithm-Based Selective Search for Dominate
Failure Modes

The B3 method (Sect. 3.2) analytically tracks down dominant failure modes in an
event-tree setting. Therefore, the approach may become computationally intractable
as the number of failure sequences increases exponentially as the number of
components increases. By contrast, the genetic-algorithm-based search scheme
(Kim et al. 2013) identifies dominant failure sequences in the random variable space
through computational simulations of cascading failures. This method improves the
efficiency of SSR analysis of systems subject to cascading failures by decoupling
the two steps: the identification of dominant failure modes using a genetic algorithm
(GA) and the estimation of the system reliability using the MSR method (Sect. 2.2).
This separation is to avoid repeating unnecessary reliability analysis for compo-
nents and system.

As adopting the searching feature of GA, the initial samples are randomly
generated in standard normal random variable space, especially on the surface of a
hypersphere with a small radius R0. The radius is increased as the searching con-
tinues, as illustrated in Fig. 7. After transforming the generated samples into the
original random variable space, structural analyses are performed for each sample
point to sort out the ones that result in cascading failures leading to the system-level
failure, e.g. structural collapse. For example, in Fig. 7, the system failure domain is
determined by the intersection of limit-state functions. For the five samples derived
from the hypersphere with radius di, the structure analyses would confirm that the
red-star sample is a failure mode while the other black-circle samples are not. The
next generation is then produced from the failure mode samples using the two main
operations of GA, crossover and mutation. The identification of new samples for a
certain radius is terminated when no additional failure mode is detected after a
certain number of operations. Then, another searching begins with a slightly
increased radius. This outward searching scheme was proposed so that one can
identify the dominant failure modes by priority based on the fact that points nearer
to the origin tend to have higher probabilities in the standard normal random
variable space. The overall searching process is terminated when the searching
radius reaches the prescribed upper bound, e.g. R1 in Fig. 7, or the probabilities of
newly found failure modes are lower than the predefined limit. The MSR method
(or a proper SSR analysis method) is then adopted to estimate the probabilities of
the identified failure modes and their correlation coefficients, i.e. lower-scale
analysis, and to find the probability of system failure based on the result of
lower-scale analysis, i.e. higher-scale analysis (Kim et al. 2013).

The GA-based selective searching scheme has been applied to several practical
problems. Kurtz (2011) applied the search scheme to a planar truss model con-
structed for a real bridge that has 97 elements and 50 nodes. The method was also
applied to offshore structural systems under extreme loads from sea waves (Coccon
2016).
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Since the events generated by GA-based selective search represent the potential
failure modes and the probability of each of them is identified during the analysis,
criteria related to cascading failures and critical failure modes in Table 2 are dealt
with by this methodology. Since the method is a sampling-based approach, it is
applicable to a wide class of structures and failure phenomena as long as a proper
computational simulation is feasible for the cascading failure of interest. Compared
to event-tree-based search approaches such as the B3 method, the GA-based search
method is more scalable to systems with a large number of components.

4 Summary and Conclusions

This chapter provides a critical review of seven state-of-the-art structural system
reliability (SSR) methods that were developed to address essential needs in SSR
analysis, and new challenges in SSR analysis of complex systems. Six essential
needs aroused from the innate properties of SSR, i.e. general applicability, flexi-
bility in incorporating input information, inference capability, parameter sensitivity
calculations, efficiency, and scalability to large systems were effectively addressed
by linear programming bounds, matrix-based system reliability method, sequential
compounding method, and cross-entropy-based adaptive importance sampling.
Meanwhile, three emerging needs aroused from complex systems, i.e. considering
cascading failures of multiple components, identifying critical failure modes
effectively, and obtaining updated or conditional probabilities for the purpose of
inference, were addressed effectively by selective recursive decomposition algo-
rithm, branch-and-bound method employing system reliability bounds, and
genetic-algorithm-based selective search for dominant failure modes. These review

Fig. 7 GA-based selective
search for dominant failure
modes
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results were summarized in Tables 1 and 2, respectively. Throughout the review,
main concepts, merits, current limitations and future research needs of each method
were presented.

Through recent research efforts including those reviewed in the chapter, the SSR
technologies were significantly reloaded against current and future needs in risk
management of structural systems. This technological reload was made possible by
Prof. Armen Der Kiureghian’s revisit of this important topic in the early 2000s,
which has led to new insights and perspectives on the topic of SSR, especially in
terms of SSR formulations, system reliability updating, component importance
measures, parameter sensitivities of system reliability, and reliability of systems in
which component failures are described by stochastic processes or show significant
level of statistical dependence. The technological reload has relieved significant
computational cost, broadened the application areas of SSR analysis, provided new
insights regarding SSR, and enhanced the basis of decision-making related to
structural systems. The review also reveals that there are still many technological
needs for SSR analysis, e.g. bridging the gap between the results of SSR analysis
and critical information needed for risk-based decision-making in practice. Mean-
while, technological demands from the societies are expected to continue growing
as the complexity of structures and infrastructure networks will be increased in the
future. Future reloading of SSR technologies need to take advantage of rapid
growths of computational power, unprecedented amount of available data and
statistical learning algorithms to support (near) real-time inference using monitoring
and sensor data, and systematic decision-making scheme on complex systems and
networks based on SSR.
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Global Buckling Reliability Analysis
of Slender Network Arch Bridges:
An Application of Monte Carlo-Based
Estimation by Optimized Fitting

Anders Rønnquist and Arvid Naess

Abstract Network arch bridges are extremely slender bridge structures with a very
efficient load-carrying structure. This configuration can carry loads that are several
times greater than traditional tied-arch bridges with vertical hangers. These bridges
are seen as an attractive structure due to their slenderness, which potentially also
make them vulnerable to global system buckling. Thus, the buckling reliability of
network arch bridges is here further investigated with emphasis on geometric and
load uncertainties. In principle, the reliability of structural systems can be accurately
predicted by standard Monte Carlo simulation. This method has several attractive
features for structural system reliability. One is that the system failure criterion is
easy to control, almost irrespective of the complexity of the system. However, the
computational cost involved may be prohibitive for highly reliable structural sys-
tems if standard Monte Carlo simulation is used. In this chapter a recently devel-
oped enhanced Monte Carlo method has been applied for calculating the reliability.
This method drastically reduced the computational burden of the standard Monte
Carlo approach and thereby made it practically feasible to estimate the reliability of
the bridge against buckling.

1 Introduction

The concept of network arch bridges has been continuously developed for almost
60 years and has been used for road bridges (Larsen 2012), as well as train
crossings (Brunn et al. 2004). By optimizing the hanger slope configuration of the
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network, the structure can be designed with a significantly lower steel weight; 50%
reduction compared to other similar tied-arch bridges with vertical hanger is
reported by Tveit (1987, 2006).

Network arch bridges are tied-arch bridges with inclined hangers having mul-
tiple intersections. The tie configuration follows the arch but with a much larger
radius of curvature. This type of arch bridge design is thoroughly described and
investigated in several papers by Tveit (1987, 2006, 2011). The inclined hangers are
well suited to distribute bending moments and shear forces to the upper and lower
chord, similar to a truss. This can be compared to tied-arches with vertical hangers,
where the bending moment and shear forces are relatively large and decisive in the
design. Thus, for network arch bridges bending moments in the transverse direction
are more important than in the longitudinal direction. This property is one of the
main conditions in designing some of the world’s most slender bridges.

In recent years, the structural assessments of new and existing structures have
included probabilistic methods to get a broader insight into the structural behavior
over time. Reliability tools have been shown to be a valuable contribution in the
decision-making process. For all structures, either already existing or yet to be built,
and perhaps especially for large civil engineering structures, these tools can be used
to evaluate different alternative methods and scenarios, as discussed by Faber
(2001).

The improvement of our ability to assess the structural condition of large
infrastructure systems during their life span has become an important issue to be
addressed at the present time. This importance is partly due to the ever-increasing
number of infrastructures reaching their final stage of design life and partly due to
changing loads and nonfulfillment of maintenance, rendering physical signs of wear
and tear. Results from these observations will ultimately necessitate major decisions
regarding our existing and future infrastructure. Questions about whether to invest
in upgrading existing structures to extend service life, or rather to replace dilapi-
dated old structures with new, will have to be answered. Regardless of the alter-
native selected, major investments must be made in the immediate future to uphold
today’s standard and to cover future demands.

The solution to realistic structural system reliability problems is generally
exceedingly difficult to obtain through conventional reliability methods, such as the
first order reliability method or second order reliability method (FORM or SORM),
(Madsen et al. 1986; Melchers 1999). The main reason is the high number of limit
state functions and basic random variables that may be required to define the
problem. The system failure event in a realistic case may be defined by a complex
combination of failure modes; in general, as a combination of series and parallel
systems. The failure criteria are also very often associated with nonlinear structural
behavior, requiring computationally demanding numerical approaches, such as the
nonlinear Finite Element (FE) analysis, to accurately assess the structural capacity,
which is the situation for the example bridge in this chapter.

At least in principle, the reliability of complex structural systems can be accu-
rately predicted by standard Monte Carlo simulation (Shinozuka 1972). If the
failure criterion can be represented explicitly in terms of the basic random variables,
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then it is relatively easy to evaluate the system failure criterion for each outcome of
these random variables, almost irrespective of the complexity of the system and the
number of variables. However, the system failure probabilities are typically of
rather small magnitude, and the computational cost involved in the Monte Carlo
simulation may therefore be prohibitive due to the large sample needed for robust
estimation. If numerical approaches have to be used to assess the structural
capacity, as mentioned above, the reliability problem might become intractable if
efficient techniques, such as the response surface mthod (RSM), were not used
(Bucher and Most 2008).

A new Monte Carlo based method for system reliability estimation aimed at
reducing the computational cost was recently proposed by Naess et al. (2009). It
exploits the regularity of tail probabilities to set up an approximation procedure for
the prediction of the far tail failure probabilities, based on the estimates obtained by
Monte Carlo simulations at more moderate probability levels. The method was first
applied to small structural systems (Naess et al. 2009) and later to complex systems
involving several thousand limit state functions and basic random variables (Naess
et al. 2011). It was shown that the method provides good estimates for system
failure probability with low to moderate computational cost. In this study the
method is used to estimate the failure probability of global system buckling of a
network arch bridge represented by a finite element (FE) structural model. Of
particular interest has been to test the method for sudden failure modes which
demands very low probability of failure magnitudes. The combination of low
probabilities of failure together with a structural model including several numerical
steps in the structural analysis will give noticeable calculation times, which then
easily becomes a major issue. An important goal is therefore to show that the
method offers a uniquely attractive approach to structural reliability analysis of
realistic and complex engineering reliability problems.

2 Network Arch Bridge

In the present investigation an enhanced Monte Carlo simulation method is intro-
duced to assess the system buckling reliability of a slender network arch bridge due
to traffic loads. For all slender structures geometric imperfections are of special
interest and their effect on the global system must be thoroughly investigated. Thus,
for the presented case study four global geometric imperfections are introduced as
basic random variables, width, length, height and the arch out of plumbness, see
(a–d) in Fig. 1.

Furthermore, the arch tube member geometric cross-section properties are also
introduced as random variables. These are the four main steel arch members’ outer
radii together with corresponding thicknesses, which leads to eight more basic
variables. The four arch members are the wind portal frame columns, given as the

Global Buckling Reliability Analysis of Slender Network … 49



lower part of the arch (a in Fig. 2), wind portal frame girder (b in Fig. 2), wind
bracing (c in Fig. 2) and the remaining arch members above the wind portal frame
(d in Fig. 2). Hence, the variables shown in Figs. 1 and 2 constitute the 12 basic
random variables of the system buckling reliability analysis.

All geometric random variables are assumed to be uncorrelated and normally
distributed with the mean values as nominal values (i.e., the dimensions given on
drawings). The coefficients of variation (CoV) given in Table 1 are chosen from the
guidelines given by JCSS (2001) for arch parameters, within acceptable production
tolerances (commonly given as fractions), and from Li and Sun (2011) for steel
member parameters. Even though the CoVs are seemingly small their contribution
cannot be neglected due to the high desired global buckling reliability. Note that
due to small CoVs, it is not necessary in practice to truncate the random variables to
avoid negative values.

Fig. 1 Geometric imperfections introduced as basic random variables; a width, b length, c height
and d out of plumbness

Fig. 2 Network arch steel
members; a main arch below
wind portal frame girder,
b wind portal frame girder,
c diagonal wind bracing and
d main arch above wind
portal frame girder
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2.1 Model Uncertainty

Most civil engineering models are based on a hypothesis regarding the physical
understanding supported by empirical relations between different variables. The
chosen models will introduce uncertainties due to lack of knowledge as well as
inherent physical uncertainties. This lack of precision, combined with deliberate
simplifications, will give model predictions differing from the real output. To
account for this in the present analysis, a model parameter, I, is introduced, rep-
resenting the model uncertainties for the load and structural capacity. This
parameter is then treated as an additional random variable in the system.

A systematic method for choosing and quantifying the material and load model
uncertainties can be found in the Reliability-Based Classification publication by the
Road Directorate, Ministry of Transportation in Denmark (Scholten et al. 2004).
The structural capacity model uncertainty is accounted for by the random variable
Im, introduced as a multiplicative factor in the limit state function. This variable is
assumed to be lognormally distributed with a mean value of 1.0 and a coefficient of
variation VIm, given by:

VIm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
I1 +V2

I2 +V2
I3 + 2 ρ1VI1 + ρ2VI2 + ρ3VI3ð Þ

q
ð1Þ

cf. Scholten et al. (2004). The coefficients of variation, VIi, and the correlation
coefficients, ρi, are determined, based on the assumption of three main contributions
(i = 1, 2, 3). These represent the accuracy of the computational model, uncertainty
in determining material parameters and the precise identity of materials. For the
present example, selections are made for the structure as a whole. To be able to
select values as described by Scholten et al. (2004), the three uncertainty levels
must be assessed. The following three choices are made: the uncertainty of the
computational model accuracy is set to normal; the uncertainty in determining
material parameters is set to medium, and the uncertainty related to the identity of
materials used in construction is set to normal. These assumptions are used in
accordance with Scholten et al. (2004). The coefficients of variation and correlation
coefficients are found to be Vi = 0.06 and ρi = 0.0 for all three uncertainties.

To quantify the load model uncertainty, a model is used similar to that described
by Scholten et al. (2004). The uncertainty in the computational model for loads is

Table 1 Coefficients of
variation (CoV) for basic
random variables

Random variables CoV

Tube outer radius, r 2.5%
Tube thickness, t 2.5%
Arch length, L 1/10000
Arch height, H 1/1000
Arch width, W 1/1000
Arch out of plumbness, θ 1.5o/oo
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then accounted for by introducing a normally distributed stochastic variable, If, by
adding it to the limit state function. Thus, the model uncertainty for traffic loading is
found by assuming a medium uncertainty in accordance with Scholten et al. (2004),
rendering a zero mean value and a coefficient of variation VIf = 0.15.

2.2 Traffic Load

The traffic load represents one of the most significant contributions to the total value
of the external actions to be considered in the ultimate limit state analysis. For the
reliability analysis we need a traffic load model of a given return period that will
represent one of several possible load cases. The traffic loads on bridges are, by
their nature, of great complexity due to the high randomness covering a large range
of structures and traffic situations. Hence, traffic loads are often modeled conser-
vatively. This is a natural consequence of the significant variation of the loads, also
due to their site dependency, especially for long spanning bridges (Getachew 2003).

The uncertainty in the traffic load depends on several statistical variables
involved in describing the problem. Typical variables considered are type of
vehicle, interval between vehicles, gross weight of each vehicle, gross weight
distribution to axles, spacing between extreme axles and between any pair of axles,
total external length of the vehicle, velocity, daily intensity of vehicles per lane, and
the density of vehicles over the road, as described by Bez and Bailey (1993), see
also Nowak et al. (2010). In most cases there is no common analytical expression
for the total load distribution and the correlation coefficients between all these
variables.

Bez and Bailey (1993) showed that the traffic load is highly dependent on the
type of vehicles as well as their individual load situations. They identified relations
between characteristic load and maximum load effects, and they showed that the
axle load distributions for both loaded and unloaded vehicles are skew distributions.
Thus, under the assumption that these distributions represent extreme events, they
may be assumed to be Gumbel distributed. Furthermore, if a complete description
of the different cases is sought, then a multimodal distribution must be used. Several
similar studies are also reported by Getachew (2003), which show that a detailed
description of the traffic load can be modeled by the sum of several assumed
independent contributions.

The extreme values of the traffic load are assumed to be Gumbel distributed,
where the described load case is assumed to represent a uniformly distributed line
load. The design rules given by the Norwegian Public Road Administration
(NPRA) do not clearly state what the return period of the characteristic traffic load
is. However, the Eurocode NS-EN 1991–1992 (2010) is based on a return period of
1000 years.

To establish the load distribution for the present network arch bridge, the
characteristic design load given in Norway by the NPRA is used. This is done to
determine the necessary site-specific probabilistic load model for the reliability
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analysis. The characteristic load is also compared with the expected distribution of
the weight of a 250 m queue that is registered and thoroughly described by
Getachew (2003). For the load model, a Gumbel distribution and a return period
equal to 1000 years are assumed. To find the Gumbel parameters the estimates of
the mean and standard deviation for the extreme traffic load are needed. This is
obtained by fitting the available data from the two load distribution assumptions
above, giving a mean and standard deviation equal to mq = 3.5 N/m and σq =
1.1 N/m. Finally, the Gumbel distribution, F(x), given by Eq. (2) can be established
by the location parameter α and the scale parameter δ from their relation to the
above mean µ and standard deviation σ:

FðxÞ= expf− exp½− δðx− αÞ�g ð2Þ

where δ= π σ̸
ffiffiffi
6

p
and α= μ− 0.57722 δ̸, rendering the scale parameter δ = 1.17

and the location parameter α = 3.0 (relations as used by Xiangyang and Guanghui
2010).

2.3 Buckling Analysis of Network Arch Bridges

Buckling occurs when a small increase in the axial compressive force in the
structure causes a sudden outwards displacement as the loading reaches a certain
critical level. Buckling does not depend solely on the applied stress reaching a
critical level, but rather it depends on variations of component dimensions and the
overall geometry of the structure. This may lead to sudden collapse of the structure
without any initial warning.

Shallow arches are more likely to have non-linear pre-buckling behavior, with
substantial deformation prior to the buckling. This effect needs to be considered and
allowed for. If a classic buckling analysis is used without including these effects,
the predicted critical load may be erroneous. Thus, it is important to include a
pre-loading step in the analysis to allow for possible non-linear response. In the
present case study bi-linear material strength is included, as well as geometric
stiffness. This will allow for the correct pre-buckling deformation to occur and the
correct stiffness to be established. Hence, this is to ensure a correct elastic buckling
load, which is used in the structural reliability analysis. Such effects are investigated
for in-plane buckling and have been shown to be of significance (Pi and Bradford
2002; Romeijn and Bouras 2008). Therefore, they are also assumed to be significant
for the out-of-plane buckling. It is shown by Pi and Bradford (2002) that significant
pre-buckling deformations may, especially for shallow arches, introduce a signifi-
cant decrease in the buckling resistance and thus lead to overestimation of the
buckling load.

For buckling of network arches, the stiffness due to the hangers will be of special
importance and significantly influence the estimated buckling capacity. The hanger
configuration will be much more favorable for network arches than tied-arches with
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vertical hangers. If the network arch tie remains straight, the arch will have in-plane
buckling modes that can be found from simple columns supported by flexural
springs, as pointed out by Schanack (2009). Simplified solutions may then be found
from in-plane arch calculation methods as used by Moen et al. (2011), Pi and
Bradford (2002) and Schanack (2009). However, it can be seen in the present
investigation that the out-of-plane buckling modes can also be expected. Here, in
the case of a large network arch bridge with great slenderness, the symmetric as
well as the asymmetric out-of-plane buckling modes may appear.

In-plane buckling modes for network arches were further investigated by
Schanack (2009). It showed that buckling load for network arches will depend on
the arch bending stiffness, the number of hangers as well as the arch to hanger
angle. However, the bending stiffness and deflection of the tie were shown to have
less effect on the global buckling load.

3 Efficient System Reliability Estimation

Consider a structural system for which several failure modes may be defined, and
assume that each failure mode is represented by a safety margin,

Mi =Gi X1,⋯,Xnð Þ ð3Þ

where Gi, i = 1, …, m, is the limit state function defining the safety margin Mi as a
function of a vector X = [X1, …, Xn]

T of n basic random variables. The limit state
function Gi can be a rather complicated function of the random vector X. In many
cases a closed-form equation is not known, and the evaluation of Gi requires
computationally demanding numerical models, e.g., non-linear FE models. Failure
in mode i of the system is assumed to occur when Mi = Gi (X) ≤ 0. For a basic
system of m failure modes in series, the system failure probability is defined by:

pf =P ⋃m
i=1 Mi ≤ 0ð Þ� � ð4Þ

To overcome the computational cost typically involved in the estimation of the
failure probability of a system of several failure modes, the method proposed by
Naess et al. (2009) formulates the system safety margins in the following way:

Mi λð Þ=Mi − μi 1− λð Þ ð5Þ

where Mi is a system safety margin, given by Eq. (1), and µi = E [Mi] is the mean
value of Mi. In general, the true mean value μi is unknown and therefore a sample
mean estimate μ ̂i is used, which is typically very accurate due to the size of the
sample. The parameter λ assumes values in the interval 0 ≤ λ ≤ 1, and its effect
on the system failure probability may be interpreted as a scale factor. The original
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system in Eq. (3) is obtained for λ = 1, and for λ = 0 the system is highly prone to
failure, as the mean value of the system safety margins is E[Mi(0)] = 0. For small to
intermediate values of λ, the increase in the system failure probability is sufficiently
high to obtain accurate estimates of the failure probability by standard Monte Carlo
simulation at moderate computational cost.

As proposed by Naess et al. (2009), for practical applications it is assumed that
the failure probability is a function of λ that can be written as:

pf λð Þ≈ q exp − a λ− bð Þcf g for λ0 ≤ λ≤ 1 ð6Þ

for a suitable choice of the parameters a, b, c, q, and a suitable value of the tail
marker λ0. A practical aspect of the method is therefore to identify a value for λ0 so
that Eq. (6) represents a good approximation of pf (λ) for λ ∈ [λ0, 1]. This is briefly
discussed in the next section.

The specific class of parametric functions adopted in Eq. (6) is, strictly speaking,
based on an underlying assumption that the reliability problem has been transferred
to normalized Gaussian space where a FORM or SORM (or similar) type of
approximation would work for the transformed limit state functions. However,
when the basic random variables have “exponential” type of distributions, like
Weibull, normal, lognormal, Gumbel, there is no need to make a transformation to
normalized Gaussian space. Instead, the failure probability can be estimated by
using the proposed method in the original space and adopt Eq. (6) there. This is the
procedure adopted in this chapter.

The practical importance of the approximation provided by Eq. (6) is that the
desired failure probability pf = pf (1) can be obtained from values of pf (λ) for
λ < 1. This is the main concept of the estimation method proposed by Naess et al.
(2009). It is easier to estimate the failure probabilities pf (λ) for λ < 1 accurately
than for the target value λ = 1. This is because pf (λ) for λ < 1 are larger and hence
require fewer simulations and therefore incur less computational cost. Fitting the
approximating function for pf (λ) given by Eq. (6) to the estimated values of the
failure probability obtained by Monte Carlo simulation with λ < 1 will then allow
us to estimate the desired failure probability by extrapolation.

It may be noted that the method described above is, in fact, very different from
an importance sampling method. While importance sampling is vulnerable to the
dimension of the space of basic random variables, this is not at all the case with the
method described here, cf. Naess et al. (2011).

3.1 Monte Carlo-Based Reliability Estimation by Optimized
Fitting

To find the four parameters q, a, b and c in Eq. (6), which defines an optimal fit
between the parametric function and the estimated values of the failure probability
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obtained by Monte Carlo simulation, an optimized fitting procedure was suggested
by Naess et al. (2009).

A sample of size N of the basic random variable vector X = [X1, …, Xn]
T is

assumed. Now, let Nf (λ) denote the number of outcomes for which failure of the
system is verified. Then an empirical estimate of the failure probability is given by:

pf̂ λð Þ= Nf λð Þ
N

⋅ ð7Þ

The coefficient of variation of this estimator is approximately

Cv pf̂ λð Þ� �
≈

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pf λð ÞNp ⋅ ð8Þ

A fair approximation of the 95% confidence interval for the value pf (λ) can be
obtained as CI 0.95 (λ) = [C−(λ), C+(λ)], where,

C± λð Þ= p ̂f λð Þ 1±1.96Cv pf̂ λð Þ� �� �
⋅ ð9Þ

As proposed by Naess et al. (2009), the optimal fit between the empirical esti-
mates of the failure probability and the parametric function in Eq. (6) can be carried
out by minimizing the following mean square error function with respect to the four
parameters q, a, b and c in Eq. (6) at the log level:

F q, a, b, cð Þ= ∑
M

j=1
wj log pf̂ λj

� �
− log q+ a λj − b

� �c� �2 ð10Þ

where 0 < λ0 < λ1 < ⋅ ⋅ ⋅ < λM < 1 denotes the set of λ values, where the failure
probability is empirically estimated, and wj denotes a weight factor putting more
emphasis on the more reliable data points (Naess et al. 2009). A Levenberg-
Marquardt least squares optimization method is then used.

For a simple estimation of the 95% confidence interval for the predicted value of
the desired failure probability provided by the optimal curve, the empirical confi-
dence band is reanchored to the optimal curve. Further, the optimal curve-fitting
procedure is applied to the reanchored confidence band boundaries. The fitted
curves, extrapolated to the level of interest, will determine an optimized confidence
interval of the estimated desired failure probability. This procedure seems to give
confidence intervals that are consistent with the results obtained by a nonparametric
bootstrapping method (Karpa and Naess 2013). As a final point, it was verified that
the predicted value is not very sensitive to the choice of λ0, provided that it is
chosen with some care. In practice this can be done by comparing the predicted
values for a range of λ0 values.
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4 The Brandanger Network Arch Bridge—A Case Study

The above formulation is used to study the Brandanger Bridge (shown in Fig. 3)
situated in the western part of Norway and claimed to be the world’s most slender
arch bridge (Tveit 2011).

The design of the bridge was suggested to the Norwegian Public Road
Administration in 2004 and was finally opened on the 4th of November 2010. In the
present case study an earlier-suggested version of the bridge design is used with
some further modifications.

The bridge, as shown in Fig. 4, consists of a main span length of 220 meters
with two parallel upper chord steel arches (max height of 33 meters) and a lower
chord concrete slab tie suspended by 44 hangers on each side. Between the arches
there is a simple wind portal frame and diagonal wind bracing. The arch as well as
the wind bracing consists of steel tube elements, while the inclined hangers are
made of high-strength steel cables. The bridge deck is constructed of pre-stressed
concrete with a total width of just 7.6 m, creating an extremely light and slender
structure.

The steel tube elements of the arch have two different cross sectional dimensions
along their length, separated by the wind portal frame girder, as previously shown
in Fig. 2. The cross sections on either side of the arch from the bridge deck up to the

Fig. 3 The brandanger bridge

Fig. 4 Overall dimensions of the network arch bridge: width W = 7.6 m, height H = 33 m and
span length L = 220 m
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wind bracing has an outer diameter to thickness D/t = 711/40. The remaining cross
sections from the wind bracing to the top of the arch has an outer diameter to
thickness D/t = 711/35. A typical dimension of the concrete slabs is 250 mm center
thickness, while the first outer 1.1 m on each side has a thickness of 400 mm. The
main material parameters are listed below in Table 2.

4.1 Structural Response by Finite Element Analysis

The Brandanger Bridge was subjected to extensive numerical analyses during the
preliminary design phase. These included linear and non-linear static analyses,
buckling analyses, as well as dynamic time domain analyses. The FE model for the
present analyses is built up of beam elements with tubular cross sections for the
arch and solid circular cross sections for the hangers, as well as shell elements for
the lower chord bridge deck.

To model the steel network arch in the FE model, a 3-node quadratic Timosh-
enko beam formulation was used within Abaqus/Standard for all arch tube mem-
bers, wind bracing and wind portal frame girder. For the network hangers the
2-node linear Timoshenko beam formulation was chosen. These beam formulations
allow for transverse shear deformation, and the beam may be subjected to large
axial strains. The lower chord bridge deck is represented with a simple first order
4-node, general purpose, conventional shell element with reduced integration for-
mulation within Abaqus/Standard. This element includes thickness changes and
transverse shear deformations, allowing for large rotations and finite membrane
strains.

The FE analysis procedure distinguishes between general non-linear steps and
linear perturbation steps. The general non-linear analysis is defined as sequential
events, where one state of the model at the end of the step will provide the initial
state for the start of the next. The linear perturbation analysis provides the linearized
response of the model about the state reached at the end of the last non-linear
step. At each general step in the analysis the procedure accounts for the nonlinear
effects from large displacements and deformations. These effects are of special
interest in the present buckling investigation, where it is important to account for
the pre-buckling deformation as geometric imperfections.

Table 2 Material properties used in the finite element analysis

Component Density (kg/m3) Young’s modulus (GPa) Yield stress (MPa)

Structural steel 7850 210 355
Steel hangers 7850 170 1550
Concrete bridge deck 2200 28.7 35
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4.2 Global System Buckling Reliability Estimation

The present study evaluates the system buckling limit state of the Brandanger
Bridge. The analysis includes the derived simplified ultimate traffic load model and
the FE linear perturbation eigenvalue solutions of the pre-loaded structure. In
structural design, the system failure is defined by the buckling load exceedance of
the lowest estimated structural buckling capacity. In addition to the first buckling
mode, the system reliability is also considered for the two following higher modes,
to investigate changes in the predicted failure probabilities as well as the uncertainty
of the estimated values. It will be of special interest to see how sensitive prediction
of the probability of failure is as the desired values decrease since the enhanced
Monte Carlo method is an optimized fitting and extrapolation method.

Each evaluation of the system buckling capacity is preceded by pre-loading the
system with the structural self-weight and the nominal traffic loads. The initial load
geometric stiffness is introduced already in the pre-loading step and not only used in
the perturbation step. This will allow for any nonlinear geometric contributions of
the pre-loaded structure to be accounted for. Hence, the updated structural geometry
from the deformed structure will add to any introduced imperfections. The traffic
loads are defined by the Norwegian Public Road Administration and given in their
design guide, Handbook 185 (2009). This definition includes a uniformly dis-
tributed line load of 9 kN/m over a 3 m width and three pairs of point loads, each
given as 210 kN and separated in the longitudinal directions by 6 and 2.5 m. The
uniformly distributed traffic load is also introduced as the perturbation load pattern
used in the solution.

The limit state function of the structural reliability, G, is defined by the stability
failure considered for the three first buckling modes. Hence, the general bifurcation
buckling limit state function can be formulated as:

GðXR,Pcr,Pγ , Im, If Þ=PcrðPBðXRÞ, ImÞ−Pγ PTðα, βÞ, If
� � ð11Þ

The limit state, G, is a function of the global system buckling capacity Pcr and
the load estimated from the traffic action Pγ including the model uncertainties Im
and If of the structural capacity and load model (as previously defined). The
structural basic random variables, XR, which are discussed in Sect. 2, and given by
the vector:

XR = ½tarch, tbracing, tport.column, tport. girder ,Darch,Dbracing,Dport.column,Dpor.girder ,H,W , L, θ�,
ð12Þ

where t is the thickness, and D is the diameter of tubular cross sections, while H,W,
L and θ are the four global imperfections, width, length, height and the arch out of
plumbness, respectively. The buckling capacity, PB, is calculated by the perturba-
tion load, Ppert, and the buckling load factor BLF found from the FE-analysis, and
given as:
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PBðXRÞ=Ppert ⋅BLFðXRÞ, ð13Þ

and the traffic load is estimated from the simplified Gumbel distributed traffic load
with the corresponding distribution parameters α and δ:

PT =PTðα, δÞ. ð14Þ

All parameters used in the structural analysis that are not included as basic
random variables will remain as deterministic values only. These are parameters,
such as material properties, remaining structural cross sections as well as the
geometric distribution of the load.

Typically, the failure mode of the buckling phenomenon will occur without any
warning. Hence, for civil engineering structures high reliability is required
(Scholten et al. 2004). To achieve the desired accuracy of the estimated failure
probability, a high number of simulations are needed. This means that even if the
FE analyses can be efficiently organized and quickly executed, they will still
demand a large computational effort to reach the minimum number of necessary
observed failures within the simulated population.

The probability of failure for the three first buckling modes is calculated, where
the first two are out-of-plane buckling modes and the third is an in-plane buckling
mode with significantly higher buckling load factor than the first two. The proba-
bility of failure is calculated for all three modes, using the limit state function in
Eq. (11). Typical buckling modes corresponding to the three first modes are shown
in Figs. 5, 6 and 7.

It is of interest to further explore the computational time reduction and show
how the enhanced Monte Carlo method can be used on computationally demanding
structural systems, using reasonable calculation efforts. A comparison is presented
between simply employing the enhanced Monte Carlo simulation strategy directly
with a procedure combining the Response Surface Method (RSM) (Bucher 2009)

Fig. 5 First estimated buckling mode

Fig. 6 Second estimated buckling mode
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and the enhanced Monte Carlo method. In the former, a relatively large number of
FE simulations is used that will require a substantial amount of calculation time.
The latter strategy will only need a fraction of the FE simulations and will con-
sequently achieve a considerable reduction in the calculation time. The final sample
needed for the enhanced Monte Carlo method when using the response surface
method is quickly sampled from the fitted response surface.

The RSM strategy to approximate the true process can be used with different
complexity and accuracy. A common approach is to introduce a first- or
second-order polynomial function with a set of predictor values corresponding to
the number of parameters used to account for main effects as well as predictor
values for the interaction and possible quadratic terms. The response surface
parameters are then determined, using multiple regression analysis as described by
Bucher and Most (2008) and Carley et al. (2004).

The second-order model is widely applied as a useful approximation to the true
response surface in a restricted region. The size of the problem also depends on the
set of observations used to determine the regression parameters relative to the
introduced basic random variables. There are several possible schemes to improve
efficiency. For example, an augmented Latin Hypercube Sampling can be used,
where the standard deviation of each basic random variable has been doubled to
obtain better mapping of the response space of interest with a reasonable number of
observations. In the present analysis a simple Monte Carlo simulation method is
used, demanding a high number of observations as a basis for the different response
surfaces.

The general form of a complete second-order polynomial model for n basic
random variables Xi for the regression analysis is given by

η= po + ∑
n

i=1
piXi + ∑

n

j=1
∑
n

i=1
pijXiXj + ε, ð15Þ

where pi and pij are the regression parameters. Finally, the random error term ε may
be assumed to be uncorrelated with the basic random variables and normally dis-
tributed with zero mean and constant (but unknown) variance. The number of
parameters needed for a full quadratic polynomial is given by:

Fig. 7 Third estimated buckling mode
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v= nðn+1Þ 2̸ + n+1 ð16Þ

The present model has n = 12 basic random variables, which gives the number
of parameters to v=91.

A set of response values with corresponding predictor values needs to be gen-
erated. The present investigation includes 12,000 randomly chosen FE-calculations
as observations to determine the 91 parameters of the response surface. Figure 8
shows scatter diagrams for each response surface of the different buckling modes.
The three diagrams together with the accompanying adjusted coefficient of multiple
determination value for all three buckling modes, all found to be R2

adj >0.95,
indicate good agreement for the prediction made from the response surface.

As described, the estimation of the probability of failure for λ < 1 is done by
employing the Monte Carlo simulation with or without the response surface. Each
system buckling analysis was computed by the bifurcation analysis in
Abaqus/Standard. The computational time for a single analysis is approximately
10 s on a standard laptop computer, including time to retrieve results and initiate a
new analysis. The total number of simulated system buckling analyses was
3.88 × 105 executed in 6 parallel processes, rendering approximately 8 days and
nights of computational time. This was deemed to be a reasonable calculation effort
to invest in the present problem using Monte Carlo simulations. The 12,000
observations needed to establish the response surfaces represents approximately one
day (6 h) of FE simulations as used in the Monte Carlo estimation. The response
surface is then used to simulate a new set of 7.5 × 105 observations to calculate the
empirical probability of failure for λ < 1, which requires about a minute on a
standard laptop computer.

The predicted failure probability and reliability index at λ = 1, given by the
fitted optimal curves and the re-anchored and optimized 95% confidence interval,
are given in Table 3 for the Monte Carlo simulation and Table 4 for the response
surface simulations. The corresponding diagrams for the probability of failure, as
predicted by Eq. (6) for λ-values up to one, are shown pairwise in Figs. 9, 10 and 11
mode by mode for the MC- and RSM-simulations. Each of the Figs. 9, 10 and 11

Fig. 8 Scatter plot of obtained results from the FEM procedure, compared to the predicted results
by the RSM procedure; a buckling mode 1, b buckling mode 2, and c buckling mode 3
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also includes the values established from the fitting procedure, q, a, b, and c defined
for each pf (λ) to be used together with Eq. (6).

The results in Tables 3 and 4 show the failure probabilities for different buckling
modes. Table 3 includes results from only FE-simulations and the enhanced Monte
Carlo method, while Table 4 includes results from a reduced number of simulations
to establish a response surface and then again the enhanced Monte Carlo method.
As expected, the probability of failure variations is greater for higher buckling
modes than lower modes. In Table 4 the reliability index is slightly higher than in
Table 3, indicating a slightly more reliable structure. This is partly due to the good
representation of the response surface at the region of interest and partly due to the
slightly higher number of samples used from the response surface. This shows that
the number of FE simulations chosen for the response surface is sufficient, as also
shown by the scatter plots in Fig. 8. If more simulations from the response surface
were run, the confidence intervals could also be further reduced. In Figs. 9, 10 and
11 the width of the 95% confidence interval for λ = 1 can be seen. In Tables 3 and
4 the mean estimated failure probability is presented together with the confidence
interval.

To elucidate the increase in the variation of the failure probability of higher
modes, a column presents the difference between the reliability indices corre-
sponding to the upper and lower confidence interval limits. This variation clearly
increases with increasing buckling modes. Furthermore, comparisons between
results within each mode (Tables 3 and 4) indicate that the variation is less for the
response surface estimations. The empirically estimated failure probabilities (λ < 1)
oscillate less for RSM than for Monte Carlo simulations only, which are seen when
comparing the different diagrams in Figs. 9, 10 and 11. This seems reasonable since
the investigated system instability problem is quite smooth over the region covered
by the response surface. Hence, even though the response surface is based on a

Table 3 Network arch bridge probability of failure for global system buckling, estimated with the
three first buckling modes by Monte Carlo simulations

Pf− Pf Pf+ β- β β+ Δβ

Mode 1 3.48 × 10−7 6.46 × 10−7 10.3 × 10−7 4.75 4.84 4.96 0.21
Mode 2 1.75 × 10−7 3.98 × 10−7 7.09 × 10−7 4.82 4.94 5.09 0.27
Mode 3 0.29 × 10−9 1.68 × 10−9 4.33 × 10−9 5.76 5.91 6.20 0.44
Reliability index given by β = −Φ(Pf)

Table 4 Network arch bridge probability of failure for global system buckling estimated with the
three first buckling modes by response surface simulations

Pf− Pf Pf+ β− β β+ Δβ

Mode 1 2.73 × 10−7 4.46 × 10−7 6.66 × 10−7 4.83 4.91 5.01 0.18
Mode 2 1.32 × 10−7 2.45 × 10−7 3.96 × 10−7 4.94 5.03 5.15 0.21
Mode 3 0.10 × 10−9 0.56 × 10−9 1.65 × 10−9 5.91 6.09 6.37 0.46
Reliability index given by β = −Φ(Pf)
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reduced number of FE-simulations, they cover sufficiently detailed behavior of the
process, and the final sampling is somewhat larger than the first. It can be seen in all
three modes, which show slightly lower predicted failure probabilities (λ = 1). This
demonstrates that the estimation of system probability of failure for a large civil
engineering structure can be sufficiently well determined by a moderate number of
simulations, the use of a response surface, if based on an appropriate mapping of
the response space obtained by FE calculations, and employment of the enhanced
Monte Carlo method.

All estimated probabilities of failure comply with the expected desired proba-
bility of failure commonly used in designing civil engineering structures, depending
on the consequences of failure and failure modes. For example, in Annex B of
Eurocode NS-EN 1990 (2008), three different desired reliabilities are given as 10−5,
10−6 and 10−7.

Fig. 9 a Log plot of failure probability with buckling mode 1, MC. Parameters of the fitted
optimal curve: q = 0.210, a = 15.222, b = 0.128 and c = 1.322, b Log plot of failure probability
with buckling mode 1, MC from RSM. Parameters of the fitted optimal curve: q = 0.365,
a = 14.143, b = 0.024 and c = 1.550

Fig. 10 a Log plot of failure probability with buckling mode 2, MC. Parameters of the fitted
optimal curve: q = 0.321, a = 14.729, b = 0.052 and c = 1.487, b Log plot of failure probability
with buckling mode 2, MC from RSM. Parameters of the fitted optimal curve: q = 0.399,
a = 14.229, b = 0.003 and c = 1.648
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5 Conclusions

In the present investigation the global buckling reliability of a network arch bridge
is assessed by an efficient enhanced Monte Carlo-based method. It has been shown
that the method provides good estimates of the reliability of the structural global
system with reasonable computational effort. The method is used in the present
study to estimate global system buckling failure probability, which allow for pos-
sible nonlinear pre-loaded geometric stiffness and linearized buckling, all solved by
the FE software Abaqus/Standard. The low values of the probability of failure are in
agreement with the desired values in design codes, with a failure event without
warning and with great consequences, commonly set to 10−7. The enhanced Monte
Carlo method proved to be an efficient technique for reducing the number of
simulations needed to reach acceptable levels of uncertainty of the estimated reli-
ability index. The computational time can be drastically reduced by the use of a
response surface as a basis for the necessary number of Monte Carlo simulations
needed for an accurate estimation of the probability of failure. Hence, the investi-
gation offers a method which not only reduces the calculation cost but also makes it
possible to achieve the low failure probability demand of design codes, considering
large complex structures with sudden failure modes. This is illustrated by results in
both the computational time and uncertainty of the final probability of failure, given
by the confidence intervals.
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Review of Quantitative Reliability
Methods for Onshore Oil and Gas
Pipelines

Smitha D. Koduru and Maher A. Nessim

Abstract Onshore pipelines provide a low-risk alternative for shipping oil and gas
in large quantities. Over the past two decades, it has become standard industry
practice to use risk models as a part of pipeline maintenance programs as a tool to
rank pipeline segments for repair, identify significant failure threats, and guide
operational and integrity management decisions. In recent years, pipeline failures
have garnered increased attention from the public resulting in a greater scrutiny of
the design, construction, and maintenance practices used by pipeline operators. This
provided an incentive for pipeline operators and regulators to embrace a more
rigorous and effective risk assessment and management strategies than those
common in the oil and gas industry. The objective of this chapter is to provide a
review the state-of-the-art reliability methods applicable to onshore oil and gas
pipelines. As a part of the review, common threats to pipeline integrity are dis-
cussed in the context of how they increase the demand and/or decrease the capacity
of the pipeline to withstand applied loads. An overview of the probabilistic models,
limit states and reliability methods employed for the assessment of pipeline failures
is presented.

1 Introduction

Onshore oil and gas pipelines form a critical part of the energy infrastructure (Yusta
et al. 2011). In the United States alone, there are over 400,000 miles (over
700,000 km) of gas and liquid transmission pipelines transporting petroleum
products over long distances (PHMSA 2016). In Europe, there are over 140,000 km
of gas transmission pipelines (EGIG 2015). On a per unit volume basis, onshore
buried pipelines transport petroleum products more safely than road and rail
transportation (Wang and Duncan 2014).
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As a part of pipeline maintenance programs, it is common industry practice to
employ qualitative risk assessments. The focus of pipeline maintenance programs is
to identify high risk locations and prioritize remedial actions based on risk ranking.
This focus has resulted in qualitative risk assessment approaches that are primarily
relative. These methods assign a risk index for each factor contributing to a pipeline
risk and evaluate an overall risk index that is a weighted combination of individual
risk factors (Muhlbauer 2004). However, recent failures attributed to an aging
pipeline network and the potential resulting consequences, e.g. San Bruno gas
pipeline explosion 2010 (NTSB 2015a, b), Kalamazoo river oil spill 2010 (NTSB
2012), have attracted increased attention to pipeline risk assessment models
(PHMSA 2016). While qualitative models are easier to employ, they have some
inherent limitations for applications involving complex risk interactions. These
imitations include a high sensitivity of the rankings to subjective factors that are
used to weight the different parameters affecting the risk estimate. Furthermore,
qualitative model results are system-specific, which implies that they cannot be
used to compare the risk associated with different pipelines or develop risk
acceptance criteria consistent with other engineered systems (e.g. nuclear facilities,
and aviation).

Due to the above-mentioned limitations of qualitative methods, quantitative risk
assessment methods have attracted growing interest in the pipeline industry. Such
quantitative methods have been recently adopted for land use planning around
buried pipelines in Europe (IGEM/TD/2 2009, NEN 2006). In Canada, quantitative
risk assessments and reliability design methods are included as a non-mandatory
part of the pipeline design code (CSA Z662 2015).

Risk is quantified as the product of probability of failure and the expected
consequence expressed in quantifiable measures, including but not limited to dollar
cost, number of fatalities, spill volumes. The objective of this chapter is to review
the state-of-the-art in reliability methods as applied to onshore oil and gas pipelines.
The primary emphasis of the review is on rigorous quantitative methods used to
estimate the probability of occurrence of pipeline failures. The following sections
include an explanation of how quantitative reliability methods are applied to
pipelines and a definition of the hazards and limit states that are specific to pipe-
lines. Sources of uncertainty, probabilistic models and reliability methods available
to estimate the probability of occurrence are discussed next. The chapter ends with a
brief overview of the use of reliability analysis in quantitative risk assessments, and
suggestions for potential future research by identifying the technical gaps in current
methods.

2 Problem Definition

Pipelines are linear assets buried in varying terrain conditions, which are subject to
varying hazards dependent on the nature of the terrain. Furthermore, pipelines are
subject to capacity deterioration mechanisms over their design life, and require
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periodic maintenance actions either to repair or replace the deteriorated pipe. This
results in temporal variations in the probability of occurrence of pipeline failures.
Depending on the land use, development, and environment around the pipeline, the
consequences of a failure also vary with location and time. Therefore, pipeline risk
is often annualized and expressed on a per unit length basis.

2.1 Limit States

The primary failure mode of a pressurized pipeline is a release of the product being
transported, which is often referred to as a ‘Loss of Containment’ (LoC). Based on
the magnitude of the release and the extent of associated consequences, a failure is
typically classified as a small leak or a burst. For natural gas and low vapour
pressure (LVP) pipelines, small leaks, which are referred to as “pinholes leaks”, do
not lead to significant life safety consequences and may lead to limited environ-
mental consequences in the case of LVP pipelines. Bursts can lead to significant
safety and environmental consequences, and can be further classified into large
leaks and ruptures based on whether or not the initial opening extends axially.
A large leak occurs if the resulting opening does not extend beyond the location of
initial burst. By contrast, a rupture results from an axial extension of the failure
zone by fracture or plastic collapse, leading to more severe consequences than a
large leak. Serviceability failure modes, such as local buckling or denting are also
relevant limit states that can impinge on pipeline operations but do not lead to loss
of containment.

According to the reliability based design and assessment (RBDA) methodology,
included in Annex O of CSA Z662 (CSA 2015), limit states for natural gas
pipelines are categorized as:

• Ultimate limit states, which include large leaks and rupture and result in sig-
nificant safety consequences;

• Leakage limit states, which is a leak from an opening of less than 10 mm
leading to limited loss of containment that has no significant consequences;

• Serviceability limit states, which include pipeline damage due to yielding,
ovalization, denting, excessive plastic deformation and local or global buckling,
can lead to service interruption and require repair, but do not lead to product
release. Detailed analyses and implementation of monitoring and maintenance
programs are required to ensure that the serviceability limit states do not pro-
gress to loss of containment.

A detailed list of load cases and the associated limit states and failure modes
during the design life of a pipeline have been developed by Nessim and Zhou
(2005) and are available in Annex O of CSA Z662 (CSA 2015). The limit state
functions associated with the failure modes described above, can result from either
a force-controlled or a deformation-controlled loading mechanism depending on the
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type of hazard. For example, internal pressure loading imposes a force-controlled
demand, for which the limit state function is defined in terms of either applied stress
or force. Conversely, natural hazards such as ground movements impose
deformation-controlled demand on a buried pipeline, for which the limit state
function in terms of applied strain. Limit state functions are generally expressed as,

g x, tð Þ= r x, tð Þ− s x, tð Þ ð1Þ

where g is the limit state function defined as a function of a vector of x random
variables and time t, while r is the distribution for capacity and s is the distribution
for demand, which can also be defined as functions of other basic random variables,
such as pipe geometry and material properties, and can also be a function of time
for time-dependent limit states such as corrosion and other deterioration mecha-
nisms. The probability of failure is then defined as,

Pfðg≤ 0Þ =
Z

..
Z
ðg≤ 0Þ

f xð Þdx ð2Þ

where f(x) is the joint probability distribution function of the random variables
included in the vector x.

Internal pressure, or hoop stress due to internal pressure are examples of
force-controlled processes. Capacity to resist internal pressure is often reduced by
damage to the pipeline by accidental impacts and progressive deterioration mech-
anisms such as corrosion and cracks. The pressure-containing capacity of the
pipeline at a defect location (either due to impact or deterioration) is modelled
analytically using semi-empirical models validated by test data. The calculated
capacity is uncertain due to uncertainties in the input model parameters including
defect sizes, material properties and pipe dimensions, as well as uncertainties
regarding the accuracy of the model itself. Failure mechanisms specific to the nature
of loading due to a given hazard and the associated limit state functions are pre-
sented in the later sections.

2.2 Hazards

Hazards that cause pipeline failures are typically referred to in the pipeline industry
as ‘threats’ to pipeline integrity. The ASME code for pressure piping (ASME
B31.8S 2014) divides the threats into nine categories based on their time dependent
nature. These are:

• Time-dependent

– internal corrosion
– external corrosion
– stress corrosion cracking (SCC)
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• Stable

– manufacturing-related defects
– welding/fabrication related defects
– equipment failures

• Time-independent

– third-party/mechanical damage
– incorrect operational procedures
– weather-related and outside force.

Other pipeline codes and pipeline incident databases identify further subcate-
gories or merge some of the above-mentioned categories. For example, the pipeline
incident1 database developed and maintained by the Pipeline and Hazardous
Materials Safety Administration (PHMSA) of the United States Department of
Transportation, divides the incident causes into the following six categories:

• corrosion
• excavation damage
• incorrect operations
• material/weld/equipment failure
• other outside force damage
• all other causes.

In Europe, the European Gas Pipeline Incident Data Group (EGIG) divides the
initial causes of pipeline incidents into six categories, namely:

• corrosion
• external interference
• construction defect/material failure
• hot tap made by error
• ground movement
• other or unknown.

In this review, we consider the following broad categories based on the simi-
larities either in the failure mechanisms or in the underlying damage:

• Excavation damage
• Corrosion
• Cracks
• Natural hazards
• Human error
• Other.

Excavation damage occurs due to construction activity over a buried pipeline.
This is variously categorized as third-party/mechanical damage, excavation

1Incident is defined as any event that led to loss of containment.
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damage, and external interference Cracks in the seam weld of a pipeline may occur
during the welding/fabrication process, and as such material/weld/equipment fail-
ures and construction defect/material failures are combined in a single category in
this review. While SCC has a unique growth mechanism, it is included under cracks
as the failure mechanisms leading to LoC and the models used to analyze them are
similar for all axial cracks including SCC. Incorrect operational procedures, and hot
tap made by error, would fall under the human error category of hazards.

Based on incident records for onshore gas transmission pipelines from PHMSA
(PHMSA 2016), material/weld/equipment failures, excavation damage, and corro-
sion rank as the three highest contributing causes over the 20 year period from 1996
to 2015. Figure 1 shows the proportion of incidents due to all the categories con-
sidered. EGIG data (EGIG 2015) over the 43 year period from 1970 to 2013 shows
external interference as a leading cause followed by corrosion and construction
defect/material failure for gas transmission pipelines. Figure 2 shows the failure
frequencies associated with the categories considered by EGIG. The PHMSA
(PHMSA 2016) incident database for onshore liquids pipelines shows that
material/weld/equipment failure, corrosion and incorrect operations are the three
highest contributing causes over the 20 year period between 1996 and 2015.
Figure 3 shows the proportion of incidents from all threat categories for onshore
liquids pipelines from the PHMSA incident database.

Because excavation damage and corrosion are the leading causes of pipeline
failures, extensive research is available on methodologies that can be used to cal-
culate the probabilities of failure for these two threats. In the following sections,
detailed limit state functions, sources of uncertainty, and reliability methods asso-
ciated with each hazard are presented.

ALL OTHER CAUSES 
CORROSION
EXCAVATION DAMAGE
INCORRECT OPERATION
MATERIAL/WELD/EQUIP FAILURE 
NATURAL FORCE DAMAGE
OTHER OUTSIDE FORCE DAMAGE

# of Incidents

3.2%

31.5%

9.0%

6.5%
12.9%

15.9%

21.0%

Fig. 1 All reported incidents causes breakdown for onshore gas transmission pipelines (1996–
2015) (PHMSA 2016)
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3 Excavation Damage

Assuming that the occurrence of an equipment impact is a statistically independent
event from all other impact events, probability of failure due to excavation damage
is expressed as

Pfi =P Hitð ÞP LoCjHitð Þ ð3Þ

where Pfi is the probability of failure due to excavation damage, P(Hit) is the
probability of a buried pipeline being impacted by an excavator, and P(LoC| Hit) is
the probability of loss of containment conditioned on the pipeline being impacted.
When the probabilities of occurrence and failure in Eq. (3) are sufficiently small
and the occurrence of more than one failure event is negligible, all the probabilities
are approximated by the rate. A possible failure mechanism due to excavation
equipment impact is puncture, which is defined as failure due to punching shear and
membrane action of the pipe wall (Chen and Nessim 1999). If puncture does not
occur, a dent, gouge, or gouged-dent may result from the impact. Following the
removal of impact load, gouges and dent-gouges may fail due to the loss of
resistance to internal pressure. If immediate failure does not occur, fatigue crack
initiation around dents, fatigue growth of gouges and dent-gouges due to pressure
cycling could lead to subsequent failures that result in loss of containment. Failure
mechanisms due to puncture and damage features such as gouges, and dent-gouges
that lead to immediate loss of containment are considered in estimating the prob-
ability of failure in this review. Delayed failures due to fatigue are not included.

# of Incidents

18%

5%

51%
Construction defect / material failure

Corrosion
External Interference 

8%

18%

Hot tap made by error
Ground movement

Fig. 2 All reported incidents causes breakdown for onshore gas transmission pipelines (1970–
2013) (EGIG 2015)
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3.1 Uncertainties

The sources of uncertainty associated with computing the probability of impact on a
buried pipe include:

• the rate of excavation activity along the pipeline Right of Way (ROW)
• the depth of cover over the buried pipeline which prevents the intended exca-

vation from reaching the pipeline
• the effectiveness of other preventative or protective measures such as, perma-

nent markers indicating the location of the buried pipe, on-call systems that
mark the exact location of the pipe based on prior notification of excavation
activities, and protective barriers such as concrete slabs.

To estimate the probability of failure given an impact, sources of uncertainty
include the direction and magnitude of the impact force. Depending the type and
size of the excavator, the magnitude of the impact force and associated surface area
can vary within a wide range. Therefore, failure probability estimation models
account for uncertainties in the excavator type, weight, size of the excavator bucket
teeth, and model errors associated with deriving the impact force from these
parameters (Chen and Nessim 1999). In the case of failure due to dent-gouges and
gouges, uncertainties in the size of the damage feature must also be considered.
Apart from the uncertainties specific to the occurrence and magnitude of impact,
uncertainties exist in the magnitude of internal pressure, and the pipeline parameters
affecting the capacity to maintain containment after an impact.

ALL OTHER CAUSES 
CORROSION
EXCAVATION DAMAGE
INCORRECT OPERATION
MATERIAL/WELD/EQUIP FAILURE 
NATURAL FORCE DAMAGE
OTHER OUTSIDE FORCE DAMAGE

# of Incidents

4.1%

44.2%

1.9% 8.6%

22.5%

7.6%

11.3%

Fig. 3 All reported incidents causes breakdown for onshore hazardous liquids transmission
pipelines (1996–2015) (PHMSA 2016)

74 S.D. Koduru and M.A. Nessim



3.2 Models

Fault tree analysis has been widely used to estimate equipment impact rates. The
occurrence of excavator impact on a pipeline is often assumed to be a homogeneous
Poisson process over the duration of interest and accordingly, annual impact rates
over a specified length of pipe are computed based on the activity rate surrounding
the pipeline ROW.

Chen and Nessim (1999) have developed one of the first fault tree models that
are currently widely used in North America to estimate equipment impact fre-
quencies on a buried pipeline. Basic event probabilities required for this fault-tree
model were estimated based on the results of an industry survey. In recent years,
other fault tree models to estimate the probability of failure of preventive measures
were developed by Chen et al. (2006) and Toes and Rogers (2010). Figure 4 shows
a condensed version of the fault-tree and the primary factors affecting the impact
frequencies adapted from Chen et al. (2006). The model by Toes and Rogers (2010)
accounts for the effect of concrete slab, designed according to the specifications of
UK Standard (IGEM 2013), as a protective barrier on the probability of impact.

To estimate the probability of failure given an impact, failure mechanisms due to
puncture, burst of gouge or dent-gouge damage features are modelled. Table 1
provides a summary of references describing the capacity models developed to
resist each failure mechanism. Random variables associated with limit state func-
tions for each failure mechanism are described in the remainder of this section.

Fig. 4 Simplified fault-tree model for equipment impact (adapted from Chen et al. 2006)
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3.2.1 Puncture

The limit state function for puncture, gp, is defined in the form shown in Eq. (1),
with rp as the capacity to resist the puncture, and q as the demand due to the impact
force. Capacity models for puncture can be found in Driver and Playdon (1997) and
Driver and Zimmerman (1998). The random variables considered in the
semi-empirical function for puncture resistance are:

• diameter
• wall thickness
• length of the indenter
• width of the indenter
• tensile strength of pipe material
• model error of the puncture resistance model.

Impact force is modelled as a function of the excavator mass by Roovers et al.
(2000). Chen and Nessim (1999) considered impacts by both excavators and
backhoes, and derived the probability distribution of the impact forces as,

F qð Þ=P excavatorð ÞF qjexcavatorð Þ+P backhoeð ÞF qjbackhoeð Þ ð4Þ

where F(.) indicates the cumulative distribution function, P(excavator) is the
probability of the excavation equipment being an excavator, and P(backhoe) is the
probability of the excavation equipment being a backhoe. Empirical models for
the impact forces were derived such that force due to an excavator is a function of
the excavator weight, while force due to a backhoe is a function of the excavation
depth. The probability distribution of the impact force was generated by considering
both the variability in the equipment type and the model errors associated with the
semi-empirical equations used to calculate the impact force. An alternative
approach is to derive the probability distribution from available excavators in the
industry and historical data for the dent sizes. Driver and Zimmerman (1998) model
the impact force as a shifted gamma distribution based on an industry survey, and
Cosham et al. (2008) provide Weibull distribution parameters for the impact force
based on records of the dent sizes, pipe geometries and grades in UK Onshore
Pipeline operators Association (UKOPA) fault database.

Table 1 Capacity models for
equipment impact failure
modes

Failure mechanisms References for models

Puncture Driver and Playdon (1997)
Driver and Zimmerman (1998)

Dent-gouge EPRG Model (Roovers et al. 2000)
CSA Model (Nessim and Zhou 2005)

Gouge Linkens et al. (1998)
Rupture Cosham et al. (2008)

Nessim and Zhou (2005)
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3.2.2 Dent-Gouge

The limit state function for dent-gouge failure, gdg, is a stress-based failure criteria
modelled in the form of Eq. (1), with σc as the hoop stress capacity and σp as the
hoop stress demand due to internal pressure. Typically, loading due to internal
pressure is either considered to be deterministic and equal to the maximum
allowable operating pressure (MAOP), or characterized as a time-independent
random variable based on the pressure cycling history. Critical hoop stress resis-
tance is primarily a function of defect dimensions and pipe parameters. Therefore,
the random variables considered in calculating the critical hoop stress capacity are:

• gouge depth
• gouge length
• dent depth
• wall thickness
• diameter
• yield strength
• material toughness.

The most commonly employed methods for calculating the critical hoop stress
capacity are the semi-empirical models recommended by the European Pipeline
Research Group (EPRG) (Roovers et al. 2000) and Nessim and Zhou (2005). The
model developed by Nessim and Zhou (2005) is based on previous work by
Linkens et al. (1998), Hopkins et al. (1992), and Francis et al. (1997). Both methods
are based on elastic-plastic fracture mechanics analysis and assume that the gouge
acts as a part-wall or through-wall surface crack and may fail either by brittle
fracture or plastic collapse. On the basis of available test data, it is assumed that the
effect of the dent is to introduce a bending stress in the pipe wall that does not by
itself lead to an immediate loss of containment (Francis et al. 1997). In evaluating
σp, the dent-gouge is assumed to be aligned with the longitudinal axis of the pipe. If
the variability in the dent-gouge direction is included, σp is calculated as the stress
demand normal to the gouge direction. Nessim and Adianto (2014) account for the
variability in the direction of dent-gouge through a calibrated factor of 0.65 of hoop
stress.

In contrast to puncture resistance, model error is ignored for dent-gouge resis-
tance in Annex O of CSA Z662 (CSA 2015), Cosham et al. (2008) and Nessim and
Adianto (2014). Nessim and Zhou (2005) indicate that model error in estimating
dent-gouge resistance is small enough to be ignored. They also mention that if the
gouge is assumed to be aligned with the pipe longitudinal axis the conservatism in
calculating the applied stress due to this assumption is greater than the variability in
the model error. For reliability assessment of dent-gouge damage, Cosham et al.
(2008), and Goodfellow et al. (2014) provide Weibull distribution parameters for
length and depth of gouge defects. Nessim and Adianto (2014) employ a lognormal
distribution for gouge length, and a Weibull distribution for the gouge depth.
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3.2.3 Gouge

The limit state function for burst failure of a gouge defect, gg, is also stress-based
with σg as the capacity to resist internal pressure at the gouge location and σh as the
demand due to hoop stress. Capacity to resist hoop stress in the presence of a gouge
is evaluated assuming failure due to plastic collapse and not a brittle fracture
(Roovers et al. 2000; Cosham et al. 2008). Random variables associated with this
limit state function are:

• gouge depth
• gouge length
• wall thickness
• diameter
• yield strength.

3.2.4 Rupture

The limit state functions for puncture for burst of a dent-gouge or gouge model
failures that can result in large leaks or rupture. If the probability of failure due to
rupture is required, two different formulations may be used, one based on the defect
length and the other based on the hoop stress. The limit state function for rupture
based on defect length criteria is defined by Cosham et al. (2008) as

gr = lcr − lg ð5Þ

where lcr is the critical length defined as a function of the hoop stress, pipe
dimensions and material properties, but does not include the effect of material
toughness. An alternative limit state function for gr, based on the rupture stress is of
the form in Eq. (1) (CSA 2015). It defines the capacity, σcr as the critical stress
derived based on the formulation in Kiefner et al. (1973) and the demand, σh, as the
applied hoop stress. In addition to the pipe diameter and wall thickness, σcr is a
function of pipe material properties such as yield strength, fracture toughness, and
defect dimensions including depth and length.

3.3 Methods to Estimate the Probability of Failure

The probability of failure due to an impact is a union event of all three failure
mechanisms. Therefore, probability of burst is
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P LoCjHitð Þ =Pðgp ≤ 0ÞU Pðgdg ≤ 0ÞU Pðgg ≤ 0Þ ð6Þ

If all gouge defects are conservatively assumed to be dent-gouges, then only
puncture and dent-gouge limit states are required. Therefore Nessim and Zhou
(2005) recommended using only the puncture and dent-gouge limit states. In
practice, the probability of failure due to puncture is often ignored as the probability
of failure is dominated by burst of a dent-gouge. Therefore, Nessim and Adianto
(2014) considered only the dent-gouge limit state function to estimate the proba-
bility of failure. Cosham et al. (2008) also ignore the puncture failure mechanism
and consider that the failure due to dent-gouge and gouge defects are mutually
exclusive, and therefore, the probability of failure due to each limit state function is
evaluated separately.

Due to the presence of multiple limit states, the probability in Eq. (6) is com-
monly determined using the Monte-Carlo Sampling (MCS) method. The
Second-Order Reliability Method (SORM) has also been employed to calculate the
probability of puncture separately (Chen and Nessim 1999). Cosham et al. (2008)
employed direct integration for independent failure probability calculations asso-
ciated with the dent-gouge and gouge limit states. If the leakage limit state is
evaluated separately, the probability of large leak as a result of a dent-gouge is,

P Leak onlyjdent− gougeð Þ=Pðgdg ≤ 0Þ ∩ P gr >0ð Þ ð7Þ

Therefore, the required probability becomes a system reliability problem with
two limit states. In order to reduce the computational complexity and avoid the
numerical convergence problems that can arise from the use of FORM and SORM,
MCS is commonly employed to estimate the probability shown in Eq. (7).

4 Corrosion

Corrosion is a time-dependent deterioration mechanism that reduces the pipe
capacity to resist the hoop stresses imposed by the internal pressure. For a given
segment of pipeline, failure due to corrosion occurs if any corrosion feature within
the segment fails during a specified time interval. Therefore, probability estimation
must account for the probability of occurrence of corrosion, the spatial distribution
of corrosion features on pipeline surface, the size and growth rates of corrosion
features and the likely failure mechanism for each feature. Current In-Line
Inspection (ILI) technologies can detect internal and external corrosion features
with a high degree of reliability. ILI tools provide estimates of the density and size
of corrosion features. However, uncertainties regarding these parameters are not
completely eliminated due to the practical limitations of ILI tools in detecting and
sizing corrosion features.
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4.1 Uncertainties

The uncertainties considered in evaluating the probability of failure due to corrosion
are:

• Density of corrosion features
• Initial size of each corrosion feature as defined by its depth, length, and width
• Growth rate of each corrosion feature within the time period of interest.
• Pipeline characteristics affecting the capacity to resist failure under the operating

pressure

When ILI tools are employed to detect corrosion features and estimate their
sizes, the following uncertainties in tool measurements are included:

• Probability of detection based on feature size
• Probability of correct classification of a corrosion defect
• Depth and length sizing error of the detected corrosion features
• Density and sizing of the undetected features.

4.2 Models

Models required to estimate the failure probability of corrosion features are cate-
gorized as occurrence models, growth models, and limit states, as described below.

4.2.1 Occurrence Models

Different types of occurrence models exist for internal and external corrosion, as the
underlying corrosion processes and mitigation strategies are different for the two
types of corrosion. Internal corrosion occurs primarily due to a reaction between the
product and the pipe and is influenced by the product composition, flow charac-
teristics, and pipe profile. Protective measures against internal corrosion include
addition of corrosion inhibitors to the product, running cleaning tools to remove
deposits in pipe, reducing the water content in the flow and installation of protective
liners. External corrosion occurs primarily due to an electro-chemical reaction
between the soils surrounding a buried pipe. External coatings on the pipe surface
and cathodic protection of the pipe with direct current between the pipe and a
sacrificial anode are commonly employed as protective measures against the
occurrence of external corrosion.

Models are available to determine internal corrosion rates as a function of water
content and other condensates containing carbon dioxide (CO2), hydrogen sulfide
(H2S), pipe profile, pH, temperature, pressure, velocity, and corrosion inhibitors.
Kale et al. (2004) developed a probabilistic model that estimates the probability of
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corrosion at a given location accounting for uncertainties in the pipe elevation
profile, the effects of corrosion inhibitors, as well as other pipeline-specific input
parameters, such as temperature, pressure, velocity of the flow, and concentration of
CO2, O2, and H2S. A model uncertainty factor is also included in the model. The
model identifies the most probable locations where corrosion damage is likely to
exceed a specified depth threshold.

More recently, Ayello et al. (2014) and Shabarchin and Tesfamariam (2016)
employed Bayesian network models to predict the initiation, growth and failure due
to both internal and external corrosion. Figure 5 shows the causal links considered
in estimating corrosion initiation for internal and external corrosion as adapted from
Ayello et al. (2014). The detailed Bayesian network developed for internal corro-
sion considers the product type and flow characteristics, as well as possible deposits
and erosion at pipe fittings such as valves and bends in pipe. The external corrosion
Bayesian network considers the condition of the surface coating based on possible
damage mechanisms such as excavation impacts, drainage of the surrounding soil
due to seasonal rainfall and topography, and soil properties such as porosity,
salinity and chemical properties.

Wang et al. (2015) developed a hidden Markov random field model to assess
the presence of external corrosion based on a clustering approach.

Fig. 5 Causal links for the development of bayesian networks for internal and external corrosion
(Ayello et al. 2014)
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This model correlates the density and location of external corrosion obtained from
ILI tool inspection, with the soil characteristics surrounding the detected features.
Based on this information, a random field model is used to predict external cor-
rosion on the basis of soil characteristics such as soil resistivity, pH and salinity.
This type of model is advantageous when ILI tools cannot be used for portions of a
pipeline, but data regarding the corrosion rates and soil characteristics is available.

Recent developments in ILI technologies have resulted in high detection prob-
ability for most internal and external corrosion features on segments of pipelines
that are suited for the use of ILI tools. This has resulted in a reduction in the
uncertainty associated with corrosion density. However, the probability of detection
depends on the size of the corrosion feature. Typically, the probability of detection
is modelled as a deterministic exponential function of feature depth such that,

Pd =1− erd ð8Þ

where Pd is the probability of detection, d is the depth of the corrosion feature and
r is a constant characterizing the detection capability of the ILI tool. Distributions
for density and size of undetected defects are estimated based on the detected
corrosion features and the probability of detection in Eq. (8). Lu et al. (2015)
extended this approach by developing a log-logistic model for the probability of
detection that depends not only on the feature depth but also on the feature length.
As the probability of detection is modelled as a function of both feature length and
depth, the probability of undetected features that are long and shallow or short and
deep is estimated with improved accuracy. Although this approach was applied to
SCC features by Lu et al. (2015), the methodology is also suitable for application to
corrosion features.

4.2.2 Growth Models

Since corrosion is a time dependent process, generation of new features and growth
of existing features must be considered for reliability evaluation. Occurrence
models for internal and external corrosion often address corrosion generation and
growth rates based on the same input parameters used to model corrosion initiation.
Bayesian networks by Ayello et al. (2014) account of the growth of corrosion
features in both depth and length. Miran et al. (2016) considered a power law
function for the growth of a corrosion defect depth, and length.

Due to the low growth rate of corrosion features and the significant sizing error
associated with ILI measurements, deterministic evaluation of generation and
growth rates of individual corrosion features from successive ILI run data has been
successful only for high growth rates and accurate corrosion depth estimates
obtained from special processing of ILI tool signals. In most cases however, sizing
error is large enough to dwarf the true growth rate for individual corrosion features
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(Nessim et al. 2008). Therefore, it is standard practice to employ a time independent
linear growth rate, which is modelled with a Weibull distribution (CSA 2015).

For pipelines with a high density of corrosion features, population-based growth
rates were estimated from multiple ILI runs using hierarchical models (Dann and
Maes 2015). This approach utilizes the incremental growth of the mean feature
population depth between multiple ILI runs. If features of significant depth were
removed due to maintenance actions between the ILI runs, the increment in the
mean depth value will be negligible. Also, if new corrosion features with smaller
depths are initiated between the ILI runs, the mean depth of the population in the
second ILI run will be reduced, rendering this approach ineffective.

Hierarchical Bayesian models for corrosion growth using multiple ILI data were
also developed by Al-Amin et al. (2012), and Zhang et al. (2015) in conjunction
with stochastic process growth modelling. In these applications, detected features
from each ILI run are matched to the features detected in other ILI runs. However,
uncertainties in detection and sizing of corrosion features by ILI may lead to
challenges in matching corrosion features from multiple inspections. For onshore
pipelines, growth models using different stochastic processes are available in the
literature. These are broadly divided as:

• Markov process: Hong (1999a, b) employed homogeneous and non-
homogeneous Markov processes to estimate the growth of pitting corrosion.
The Markov process models the transition states of feature size from one depth
interval to a greater depth interval based on the current feature size. The tran-
sition probability for a given time interval is independent of the past transition
probabilities. Therefore, knowledge of the current size of features will allow
modelling of their growth to a critical feature size. More recently, Timashev and
Bushinskaya (2015) applied a pure birth Markov process simultaneously to a set
of corrosion features to estimate corrosion growth. This approach requires
establishing transition probabilities, which are highly dependent on the pipe
parameters and the surrounding corrosive environmental features.

• Gamma process: Zhang et al. (2012) and Qin et al. (2015) proposed a
non-homogeneous gamma process for modelling corrosion growth. A hierar-
chical Bayesian model was developed to include the probability of detection, as
well as the bias and variance in the depth sizing of the corrosion features. The
parameters of the non-homogeneous gamma process growth model are updated
based on the imperfect measurements of the same corrosion features with each
new inspection.

• Inverse Gaussian process: Increments of corrosion depth are modelled as an
inverse Gaussian distribution in this stochastic growth model. The model
requires fewer prior distributions to model feature growth and measurement
error and yet provides similar accuracy in predicting depth increments as the
non-homogeneous Gamma process (Zhang et al. 2013). Similar to the process
above, this approach requires feature matching from multiple inspections.
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4.2.3 Limit States

For a given corrosion feature, the limit state function for small pin-hole leaks is,

gsl tð Þ=wt − dmax tð Þ ð9Þ

where gsl (t) is the time dependent limit state function for small leaks over a time
period t, wt is the wall thickness of the pipe, and dmax(t) is the maximum depth of
the corrosion feature which increases as a function of time due to the corrosion
process. Similarly, the limit state function for burst is,

gb tð Þ= rb tð Þ− p ð10Þ

where gb(t) is the time dependent limit state function for burst over a time period t,
rb(t) is the capacity of the pipe to resist the internal pressure, and p is the demand
due to applied internal pressure. As ILI data provides feature depth and length, most
burst pressure capacity models were developed using these sizing parameters and
with assumptions regarding the shape of the corrosion feature in order to estimate
its cross-sectional area. Standardized models for burst pressure capacity prediction
are available in B31G (ASME 2012) and Annex O of CSA Z662 (CSA 2015).
Other commonly used models, such as Battelle (Leis and Stephens 1997), DNV-99
(DNV 1999), are employed in an example application by Caleyo et al. (2002). In
evaluating the limit state function in Eq. (10) the following random variables are
considered:

• Corrosion depth
• Corrosion length
• Growth rate
• Wall thickness
• Yield strength
• Model error.

According to the models in B31G, corrosion depth is the maximum depth of the
feature, while CSA model considers the average depth. For features identified
through ILI run, the distribution of depth and length are derived from the sizing
errors that are specified by the ILI tool manufacturers. Depending on the choice of
corrosion growth model, growth rates are either random variables or stochastic
processes with time-dependent model parameters. A model error distribution is
available for the CSA model from Nessim and Zhou (2005), while the model errors
for B31G models are not reported in ASME (2012).

Rupture occurs due to unstable axial extension of a through-wall defect (i.e.,
maximum corrosion depth is equal to wall thickness). It is defined by the limit state
function (CSA 2015),
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gr tð Þ= pb − p ð11Þ

where gr(t) is the time dependent limit state function for rupture over a time period
t, and pb is the pressure capacity.

4.3 Methods to Estimate the Probability of Failure

Probability of failure for a single corrosion feature, Pi, is evaluated for failure due to
a small leak as,

Pi Small Leakð Þ =Pðgsl tð Þ≤ 0Þ∩Pðgb tð Þ>0Þ ð12Þ

Similarly probability of burst, including large leak or rupture, is defined as,

Pi Burstð Þ =Pðgsl tð Þ>0Þ∩Pðgb tð Þ≤ 0Þ ð13Þ

The probability due to large leak only will be defined as,

Pi Large Leakð Þ=Pðgsl tð Þ>0Þ∩Pðgb tð Þ≤ 0Þ∩Pðgr tð Þ>0Þ ð14Þ

The difference in probability between Pi(Burst) and Pi(Large Leak) will provide
the probability of failure due to rupture.

In order to evaluate time-dependent and system probabilities in Eqs. (12)–(14),
MCS is commonly adopted. Caleyo et al. (2002) employed First-Order Second
Moment (FOSM) and First Order Reliability Method (FORM) to calculate the
probability of failure due to corrosion. However, corrosion growth rates are
assumed to be linear and deterministic in this application. Zhang and Zhou (2014),
proposed a series system formulation using the FORM to evaluate the probabilities
for small leak, burst and large leak. In this approach, if t is the duration for which
the probability of failure is evaluated, tsl is the time to small leak and tb is the time to
burst, small leak can only occur if (tsl < t and tsl < tb). Similarly, burst can only
occur if (tb < t and tb < tsl). The required probabilities are recast as,

Pi Small Leakð Þ =Pðgsl tð Þ≤ 0Þ−w2 tð ÞP12 tð Þ ð15Þ

Pi Burstð Þ=Pðgb tð Þ≤ 0Þ−w1 tð ÞP12 tð Þ ð16Þ

where P12(t) = P(gsl(t) ≤ 0 ∩ gb(t) ≤ 0), and w2(t) P12(t) and w1(t) P12(t) represent
the probability of (tb < tsl < t) and (tsl < tb < t), respectively. Zhang and Zhou (2014)
solved for the values of w2(t) P12(t) and w1(t) P12(t) using a “wedge integral” method
and a “probability weighting factor” method. Both approaches perform well for
burst over a short duration. However, small leak probabilities are underestimated
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by both methods. For large leaks, the probability is increasingly underestimated over
longer durations.

The annual probability of failure of a pipeline segment of a finite length is
determined through different approaches based on the available inspection data. If
the data regarding location and sizing of individual corrosion features is unavail-
able, then the distributions for corrosion depth and length are derived based on a
representative data set from a similar pipeline. The annual probability of burst of a
finite length of pipe segment is evaluated as,

Pb = ρ ⋅ P Burstð Þ ð17Þ

where ρ is the density of the corrosion features over the given length and P(Burst) is
the annual probability of failure of a single corrosion feature. It is noted here that the
failure of a given corrosion feature is assumed to be independent of the failure of
any other feature and the occurrence of simultaneous failure of one or more features
is assumed to be negligibly small. If the location and sizing of individual features is
known, there are two different approaches for probability evaluation depending on
the objective of the reliability assessment. In order to evaluate the annual proba-
bility of failure of a pipe segment due to the failure of any corrosion feature, is the
corrosion features can be modelled as a series system reliability problem, such that,

Pb =1− ∏ ð1−Pi Burstð ÞÞ ð18Þ

In modelling as a series system, the failure of each corrosion feature is assumed
to be statistically independent of the other corrosion features. While Eq. (18)
provides the probability of failure anywhere within the segment, it is representative
of failure probability due to one or more features. In order to employ this value in a
risk computation, consequence must be quantified due to the failure of one or more
events. However, consequences are typically quantified for a single LoC event.
Using consequence per event in risk calculations with this approach is applicable
only when the length of pipeline segment is short enough to assume that the failure
due to a single corrosion feature will lead to a replacement of the entire pipe
segment. Then, the possibility of a second failure event due to a remaining cor-
rosion feature is eliminated. Alternatively, if probability of failure of two or more
events is negligible, the probability of failure evaluated from Eq. (18) can be
employed in the risk estimation.

As the consequence due to LoC event is quantified per failure event and pipe
segments are considered over longer lengths, it is more common to estimate
expected number of failures per segment using the MCS method, such that,

Fb =Σnfi N̸ ð19Þ

where Fb is the frequency of burst within a given length of pipe segment, nfi is the
number of samples that failed in burst for the ith corrosion feature, and N is the total
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number of samples. If probabilities of individual corrosion features are available,
then the probability of failure per unit length of pipeline segment is computed as,

Pb = ρ ⋅ ∑Pi Burstð Þ n̸c ð20Þ

where nc is the number of corrosion features with in the given length. This approach
provides a conservative estimate for the total risk as the failure due to a corrosion
feature is not assumed to prevent a subsequent failure due to another corrosion
feature. However, the probability of simultaneous failure of one or more features is
assumed to be zero in this approach. Instead of probability of failure, the annualized
rate of failure computed using Eq. (20) does not require the assumption of mutually
exclusive occurrence of corrosion feature failures. Different approaches defined by
Eqs. (17)–(20) are also applied to other corrosion feature failure modes.

5 Cracks

Cracks in buried pipelines are classified as either axial cracks or stress corrosion
cracking (SCC). Axial cracks occur as single cracks due to defects in manufac-
turing, construction and welding of the pipe joints. These are time independent as
there is no possibility of new crack initiation and growth. Under normal operating
conditions, the axially oriented cracks experience fatigue crack growth caused by
fluctuations in the internal pressure and the corresponding hoop stress cycles.
A second category of cracks, SCC, occur as crack fields and their crack growth is
driven by similar mechanisms as external corrosion. Detection of cracks through
ILI technology and the assessment of ILI tool reliability for crack detection is
currently an area currently of active research (Skow and LeBlanc 2014; Lu et al.
2015).

Uncertainties to be considered in estimating the probability of failure due to
cracks are similar to those listed for corrosion. Growth models for fatigue crack
growth depend on the stress intensity factor and the expected number of stress
cycles. Initiation and growth models for SCC are based on similar external cor-
rosive factors as external corrosion. SCC in high-pH environments is initiated by
pitting corrosion. However, mechanisms for initiation and growth of SCC in
near-neutral pH environments is not well-understood (Michael Baker Jr., Inc.
2005), although near-neutral SCC was observed in the ground conditions with high
concentrations of dissolved CO2. Statistical models for the occurrence and growth
of SCC have received considerable attention in the literature. Jaske et al. (2002)
proposed empirical models for fatigue crack growth based on the well-known Paris
Law and for near-neutral pH SCC crack growth based on power law equations.
Youzwishen et al. (2004) proposed an empirical model for predicting the occur-
rence of near-neutral pH based on an exponential function, while Jain et al. (2012)
and Ayello et al. (2014) developed Bayesian Network models for high-pH and
near-neutral pH SCC.
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The burst limit state function for cracks is similar to Eq. (10), which represents
burst of a corrosion feature. Models to determine burst due to cracks consider two
failure mechanisms: (1) ductile failure due to plastic collapse, and (2) brittle failure
due to fracture. Models for the ductile mode of failure are similar for cracks and
corrosion features. They are a function of material strength, feature depth and
length, and pipe parameters such as wall thickness and diameter. Models for brittle
failure, on the other hand, are dependent on the fracture toughness of the material.
A few widely-used semi-empirical models exist to predict the burst pressure
capacity for a crack. These include the Log-Secant Model (Kiefner et al. 1973), the
Modified-Log-Secant Model (Kiefner 2008), and the CorLASTM Model (Jaske and
Beavers 2001). Yan et al. (2014) provide a comprehensive list of available burst
pressure prediction models and the model error associated with each. In their study,
over a hundred burst pressure results from experimental studies were compared to
the model predictions and the coefficient of variation of the model error was esti-
mated. The CorLASTM Model with 22.8% coefficient of variation has the lowest
model error. A further comparison of capacity prediction models with experimental
data by Tandon et al. (2014) also indicated significant model errors. Given the high
model uncertainty in the capacity predictions, reliability analyses for cracks must
properly account of the model error distribution. However, characterization of
model error in the burst pressure capacity models is an area of ongoing research.

When fatigue crack growth and SCC crack growth are considered, evaluation of
the probability of failure due to cracks requires a time-dependent reliability analysis.
The problem of estimating the time-dependent probability of crack failure for a
given pipe segment is similar to corrosion. Hence, the same reliability analysis
methods for corrosion are applicable to cracks.

6 Natural Hazards

Rizkalla et al. (2008) provided a detailed list of common geotechnical and
hydro-technical hazards that affect buried pipelines. These include geotechnical
hazards such as ground movement, seismic shaking and liquefaction, as well as
hydro-technical hazards caused by scour, bank erosion, debris and floods. Other
natural hazards include lightning and forest fires.

Of all the natural hazards, ground movements is the most common. Movement
of the soil can induce significant imposed displacement on the buried pipe. These
displacements result in bending and axial stresses in the pipeline. The primary
sources for ground movement are:

• Slope creep: A gradual soil movement, in horizontal plane to the pipe axis, due
to fluctuations in the pore water pressure in the soils.

• Landslides: A sudden ground movement along steep slopes along an inclined
plane, primarily in horizontal plane to the pipe axis.
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• Subsidence: A gradual vertical downward movement of the soil due to the
lowering of ground water table or collapse of underground mines.

• Frost heave: A gradual vertical upward movement of the soil due to the freezing
of water in the discontinuous permafrost regions in the arctic. This movement
could be periodic depending on the seasonal changes in temperature and
moisture content of the soils due to precipitation.

• Thaw settlement: A gradual vertical downward movement of the soil due to
thawing of the frozen permafrost soils in the discontinuous permafrost artic
regions.

• Earthquakes: Lateral spreading of the soil due to liquefaction, permanent ground
displacements due to failure of weak soils and surface faulting across the pipe
axis.

Due to the varied nature of ground movement sources, displacement demands on
the pipelines can be time dependent (slope creep, subsidence, frost heave and thaw
settlement), and spatially distributed (subsidence, frost heave, thaw settlement, and
earthquakes). Therefore, uncertainties regarding the ground displacement magni-
tude over the duration of interest, the location of occurrence of the ground dis-
placement and the mechanical properties of the moving soil dominate the failure
probability calculations. For location specific time-independent hazards, such as
landslides and liquefiable soils due to ground shaking, quantification of the mag-
nitude of ground displacement is still a source of large uncertainty.

Bending and axial stresses induced by ground movement result in two different
modes of failure in a buried pipeline. Excessive compressive stresses can lead to
local buckling in the pipe surface. While bucking is typically considered as a
serviceability limit state, cyclic hoop stresses at buckling location could result in
fatigue cracking and rupture. Axial tensile stresses can lead to rupture of manu-
facturing cracks in girth welds, which is an ultimate limit state that leads to loss of
containment. As ground movements induce deformation-controlled loading, both,
serviceability and ultimate limit states are characterized with imposed strain
demands and strain capacity of the pipe body and girth weld.

Strain demand due to soil displacement around a buried pipelines are evaluated
as a function of the magnitude and direction of ground movement, the length of the
moving block of soil, the soil strength parameters and pipe dimensions and material
properties. Simplified equations for determining strain demand are limited to par-
ticular directions of ground movement relative to the pipe longitudinal axis (Rajani
and Morgenstern 1993; Yoosef-Ghodsi et al. 2008). Several empirical models exist
for the assessment of compressive strain capacity (Zimmerman et al. 1995; Dorey
et al. 2001; Liu et al. 2013) and tensile strain capacity (Wang et al. 2011; Tang et al.
2014). However, there are large uncertainties associated with both strain demands
and capacity, in addition to the variabilities inherent in the soil properties that are
used to estimate strain demand.

Reliability analyses are rarely conducted for ground movements. Rizkalla et al.
(2008) proposed a framework for quantitative risk assessment of geotechnical
hazards. However, quantitative reliability methods are not generally accepted for
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geotechnical applications due to the lack of sufficient data and large uncertainties in
the soil parameters as noted. Zhou (2012) showed an example application for the
influence of soil heterogeneity on the probability of failure for longitudinal ground
displacements due to slope creep. Nessim et al. (2010) provided a methodology for
seismic reliability assessment of buried pipelines due to permanent ground dis-
placement. However, the seismic sources considered in that study were limited to
the known fault sources. A comprehensive overview of seismic reliability assess-
ments that identified a number of challenges in determining soil conditions, strain
demand, and pipe strain capacity is available in Honegger and Wijewickreme
(2013).

7 Human Error

Incorrect operations are primarily caused by human error in the pipeline control
room. The effect of human factors on pipeline operations and accounting for
heuristics (such as the use of short-cuts or rules of thumb) and biases (such as
selective attention, confirmation bias, word-framing resulting in biased decisions) in
decision-making is a growing field of interest in the pipeline industry (Harron
2015). However, the effects of human factors including variance in operator per-
formance and operator actions leading to a failure have not been systematically
studied in the pipeline industry.

Incorrect operations often lead to overpressure in the pipelines. The effect of
incorrect operations can therefore be accounted for in defining the probability
distribution of internal pressure which is used in the limit state functions for
excavation damage, corrosion and cracks.

8 Conclusion

Reliability analysis in pipeline industry is employed for quantitative risk estimation,
which is evaluated as the product of probability of occurrence of loss of contain-
ment and the associated consequences. The consequences of a product release can
be categorized in terms of life safety, environmental impact and financial losses.
Release consequences varies with the type of product released, the release volume,
the probability of receptor exposure and the sensitivity of the receptors to the
product. Receptors could be human populations, natural habitat, or wildlife.
A comprehensive overview of framework for estimation of consequences is
available in the risk assessment methodology proposed by Muhlbauer (2004, 2015).

Consequences are dependent on the volume of product release, which in turn
depends on the failure mode. Therefore, variations in the estimation of risk is
largely dependent on the threats included in the assessment of pipeline integrity, and
the estimation of the associated probabilities for different pipeline failure modes.
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As mentioned earlier, methodology adopted for combination of failure probabilities
due to individual corrosion or crack features, and other time and location dependent
hazards, such as ground movements, could lead to significant difference in the
estimated risk. In the presence of multiple threats, risk estimation for each threat
separately is the ideal approach for proper accounting for risk. Probability esti-
mation for the combined occurrence of multiple failures with a series system reli-
ability approach, as denoted in Eq. (18), will lead to an underestimation of the total
risk. Careful consideration of the consequence estimation is required when com-
bined probability of failure is employed in risk assessments.

Reliability methods are widely applied for the evaluation of the probability of
loss of containment from pipelines due to excavation damage and corrosion fea-
tures. Due to the complexity of the limit state functions, the need to consider
multiple limit states simultaneously in order to account for different failure modes,
and the time-dependent nature of reliability problem, Monte-Carlo Sampling is
considered to be the most reliable method for probability estimation. However, it is
well-known that the computational time required for Monte-Carlo Sampling can be
high, particularly for the computation of very low probabilities. This limits the
application of quantitative reliability approaches in the industry. With new
advances in numerical analysis approaches, application of finite element analyses to
the failure analysis of corrosion, cracks and ground movements has increased (e.g.
Fredj et al. 2015; Filho et al. 2014; Hanif and Kenny 2014; Barbas and Weir 2007).
In an effort to reduce the number of evaluations of finite element models, response
surface methodologies and the use of surrogate models for reliability estimation is
an area of growing interest.

As evident from this review, development of efficient reliability analysis
methods that address the unique challenges in estimating the probability of pipeline
failures has considerable research potential. In order to accelerate the use of
quantitative risk assessments within the pipeline industry, there is a significant need
for advanced and faster alternatives to Monte-Carlo Sampling that provide accurate
and reliable estimates for probability of failure.
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An Intuitive Basis of the Probability
Density Evolution Method (PDEM)
for Stochastic Dynamics

Alfredo H.-S. Ang

Abstract The recently developed Probability Density Evolution Method (PDEM)
is described in intuitive terms in order to permit a better understanding and wider
application of the PDEM in practical engineering problems, particularly for
assessing the risk and reliability of large and complex engineering systems. In
implementation, the PDEM is similar, in a limited sense, to the basic Monte Carlo
simulation (MCS) in that it also requires deterministic response solutions of a
system. However, in principle and in theory it is very different from the MCS. The
practical effectiveness of the PDEM is emphasized and illustrated.

1 Introduction

The recent development by Profs. Jie Li and Jianbing Chen of Tongji University,
Shanghai, China represents one of the significant recent advances in the field of
reliability and risk analyses (Chen and Li 2007, 2008; Li and Chen 2006, 2009).
The mathematical theory of the probability density evolution method or PDEM has
been rigorously established by the authors. The rigorous theory may require good
mathematical background to comprehend. However, because of its practical sig-
nificance in advancing the field of reliability engineering, it is important that the
method be more widely understood and appreciated by practicing engineers.

In this spirit, the purpose of this chapter is to provide an intuitive explanation or
description of the PDEM, in terms that will enlighten better understanding and/or
appreciation of the true significance of the method, especially of its effectiveness in
solving complex problems in engineering, without the full exposition of its
underlying mathematical and theoretical basis.
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2 Practical Significance of PDEM

The best way to describe the PDEM is that it is similar in implementation to the
basic Monte Carlo simulation (MCS), but only in the sense of the required deter-
ministic sample response solutions of a system.

It starts with the deterministic response solution of a system just as with the
MCS. However, each simulated deterministic response solution is associated with a
mathematically assigned probability; the determination of the associated probability
is a non-trivial mathematical problem (Chen and Li 2008). In contrast to the tra-
ditional MCS which requires random sampling of all possible deterministic
response solutions, the sample size (or representative points) by PDEM is much
smaller than that required of the MCS. A sample size of the order of 200–400 is
sufficient even for systems with very large number of degrees-of-freedom (e.g.,
several million) nonlinear dynamic systems.

2.1 Brief Theoretical Basis

The comprehensive and theoretical basis of the PDEM is well documented by Li
and Chen (2006, 2009). Summarized below is a brief summary of its fundamental
mathematical basis. According to Li and Chen (2006), the probability density
evolution equation is

∂pXΘðx, θ, tÞ
∂t

+X ̇ðθ, tÞ ∂pXΘðx, θ, tÞ
∂x

=0 ð1Þ

where pXΘðx, θ, tÞ is the joint PDF of X andΘ; and X ̇ðθ, tÞ is the velocity of the
structural response. The initial condition of Eq. (1) is

pXΘðx, θ, tÞjt=0 = δðx− x0ÞpΘðθÞ ð2Þ

Equation (1) can be solved with the initial condition of Eq. (2) using
finite-difference method.

The solution of Eqs. (1) and (2) may be summarized with the following steps:

1. Generate the “representative or sample points” and their respective probabilities
in the solution space. That is, obtain the deterministic solution of the system
response for each representative point and its associated probability.

2. Determine the joint PDF using finite-difference method.
3. Apply numerical integration to obtain the numerical values of the PDF.
4. On the basis of the “complete system failure process”, the reliability of a system

is defined by the one-dimensional PDF of the extreme-value of the ultimate
capacity; integration of this PDF yields the system reliability.
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The computational implementation of the PDEM is seemingly similar to the
MCS—in the sense that it requires the deterministic solution of the system response
for each representative point (or sample solution) in the solution space. However,
each of the representative points in the PDEM carries an associated probability;
determining these associated probabilities for the respective representative points is
central to the PDEM and is a significant and non-trivial mathematical problem
(Chen and Li 2008). Experience shows that the number of representative points
need not be large to obtain accurate results (of the order of 200–400 points even for
very large and complex systems). In contrast, the representative points, or sample
size, in MCS are randomly generated to virtually cover the entire population of
possible deterministic response solutions; in this case, the corresponding number of
representative points (with the MCS) can be extremely large compared to that for
the PDEM.

2.2 Reliability of Complex Systems

Thus far, for a complex engineering system, the assessment of its reliability
invariably requires Monte Carlo simulation (MCS) or its improved versions such as
by variance reduction. However, there is a limit to the effectiveness of any MCS
method, particularly for complex dynamic and highly nonlinear systems that
involve many degrees-of-freedom (e.g., with several million dof) systems. The
recent development of the PDEM provides an effective alternative computational
tool for the required reliability assessments that can and should serve to widen the
practical implementation of the reliability approach particularly for complex engi-
neering systems

Through the application of the PDEM and based on the complete system failure
process proposed by Chen and Li (2007), the reliability, R, of a system is defined as
the system capacity is greater than the applied load, and can be obtained through
the integration of a one-dimensional extreme-value PDF of the ultimate system
capacity Zmax, as follows:

R=
Z

ΩðxÞ

ZmaxðxÞdx ð3Þ

where ΩðxÞ is the safe domain of the system.
It is significant to emphasize that the above procedure, through Eq. (3), com-

pletely circumvents the need to identify the possible failure modes of a system and
their respective mutual correlations which are necessary in any traditional methods
(e.g., Ang and Ma 1981) for numerically assessing system reliability. This is not
surprising as the implementation of the PDEM may be interpreted, heuristically, as
a “weighted” sampling process similar to the MCS; the non-trivial weight for each
sample is the probability associated with each representative point.
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3 On Application to Reliability of Complex Systems

The role of the PDEM is especially significant in the assessment of the reliability of
a highly complex system, such as a very high-rise building, a long bridge, a long
underground tunnel, and others subjected to strong-motion earthquakes or severe
wind storms. For such systems, the analysis of its reliability would traditionally rely
on Monte Carlo simulations (MCS); however, because of the large number of
degrees-of-freedom needed to model a complex system, and also requiring very
large sample size (of the order of 106 for very small failure probabilities) necessary
in any MCS for sufficient accuracy, it could be impractical or too expensive to
apply the MCS. With the PDEM, and through the complete system failure process
(Chen and Li 2007), the reliability of any complex system can be assessed with
relative ease and good accuracy.

Moreover, for large or complex systems, the traditional numerical reliability
approach (e.g., Ang and Ma 1981) requires the identification of the major potential
failure modes of a system which can be many, and the calculation of the failure
probabilities of all the different failure modes many of which are mutually corre-
lated. Also, for systems with correlated parameters the problem becomes even more
complicated (Fan et al. 2015).

Instead of the traditional approach, the reliability of a system can be defined
through the complete system failure process defined by Chen and Li (2007). On this
latter basis, the reliability of a system becomes

R = Prob Zmax >0½ � ð4Þ

where Zmax is the maximum ultimate capacity of the system under the load effects;
Zmax is a function of the system parameters and of the load effects.

4 Numerical Examples

Example 1 (a simple frame) For simplicity in illustration, consider the first example
of a one-story one-bay elastic-plastic frame structure as shown in Fig. 1; the
moment capacities Mi (i = 1, 2, 3) of the three members are mutually correlated

Fig. 1 A simple frame of
Example 1
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with correlation coefficient, ρ, and is subject to a single load S that is independent of
the Mi. The solutions for this example were discussed and illustrated in Fan et al.
(2015).

All the Mi are lognormal variables with mean values μMi = 2000 KN m and
standard deviations σMi = 300 KN m, and S is also a lognormal variable with mean
value μS = 500 KN and standard deviation σS = 200 KN. The section area of all
the elements are 0.3 m × 0.3 m = 0.09 m2, and the initial elastic modulus of the
material is E = 2.06 × 105 MPa.

According to the complete system failure process, the reliability, R, of this
system is

R = Pr Pmax M1,M2,M3, Sð Þ−P Sð Þ>0f g
= Pr Pmax M1,M2,M3ð Þ− S>0f g
= Pr Zmax M1,M2,M3, Sð Þ>0f g

ð5Þ

In general, especially for a complex structural system, the Zmax can be obtained
effectively with the PDEM analysis. However, for this simple system, the Zmax may
be illustrated numerically as follows:

According to the first four moments, Zmax can be expressed by

ZmaxðΘÞ= μZmax
+ σZmaxð− l1 + k1U + l1U2 + k2U3Þ

=1236018.48+ 287340.58U

− 15824.49U2 + 4694.75U3

ð6Þ

Because Zmax is an explicit function of U, it is possible to obtain the analytical
solution for its PDF although it is analytically complex; however, its numerical
solution can be obtained, as shown in Fig. 2 (dotted line).
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Fig. 2 Comparison of the computed PDF for Zmax and the fitted normal PDF
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The PDF (dotted line) shown in Fig. 2 can be approximated with the fitted
normal PDF as follows,

pZmaxðZÞ=
1ffiffiffiffiffi

2π
p

×2.85 × 105
exp −

1
2

z− 1.25 × 106

2.85 × 105

� �2
 !

ð7Þ

with mean-value = 1.25 × 106 and standard deviation = 2.85 × 105.
The comparison between the numerical solution for Zmax and the fitted normal

PDF is shown graphically in Fig. 2.
According to Eq. (4), the safety index of the simple frame is 4.45. This is, of

course, the reliability associated only with the variability of information (aleatory
uncertainty). As there are unavoidable epistemic uncertainties, assume that (based
on engineering judgment) the mean-value of Zmax can vary with a c.o.v. of 15%
(representing the overall underlying epistemic uncertainty) and a lognormal PDF
with a median of 1.0. Then, performing the convolution integration of this log-
normal PDF with the fitted normal PDF of Fig. 2 yields (by MCS) the histogram of
the safety index of the structure as shown in Fig. 3. Observe that the mean β is 4.45,
whereas the 90% β is 5.29, and the 95% β is 5.63.

Example 2 (a tunnel subjected to strong earthquake) This example involves a long
underground tunnel subjected to a strong-motion earthquake—the 2008 Wenchuan
earthquake in Sichuan, China. The details of the solution for this complex problem
are presented in Yue and Ang (2015b); the tunnel-soil system is modeled with
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Fig. 3 Histogram of safety index, β, for Example 1
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3-dimensional finite elements (see Fig. 4) and includes the variability of the natural
soil/rock deposit which is modeled as a random field (Vanmarke 1977). Infinite
elements on both sides of the tunnel and on bottom longitudinal side are added.

The mean reliabilities of the tunnel, for different R/C tunnel lining thicknesses
and ultimate strengths, obtained through Eq. (3) are summarized in Yue and Ang
(2015b). Figure 5 shows the PDF of the Zmax for the tunnel with a lining thickness
of 0.8 m and the ultimate strength of 35 MPa; this figure shows the PDF of the
calculated Zmax and an approximate fitted lognormal PDF as follows:

Fig. 4 Three-dimensional finite element model
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Fig. 5 Computed PDF of Zmax and fitted lognormal PDF
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pðZÞ= 1ffiffiffiffiffi
2π

p
σz

⋅ exp −
1
2

ln z− μ

σ

� �2
 !

ð8Þ

with μ= − 0.1613, and σ =0.0990.
On the basis of the fitted lognormal PDF, the mean reliability of the tunnel is

0.94, which is close to the reliability of 0.91 obtained on the basis of the calculated
Zmax. This reliability represents the effects of only the variability (aleatory uncer-
tainly) of information of the tunnel lining and the surrounding soil/rock properties.

It would be of interest to compare the results of the 2D model (see Yue and Ang
2015a) with those obtained here with the corresponding 3D model. For this par-
ticular case, (with t = 0.8 m, and ultimate strength of 35 MPa) calculations with the
2D model would yield a reliability of 0.59 or β=0.23, whereas with the 3D model
the reliability is 0.91 or β=1.35; showing that the 2D model would yield very
conservative results.

The above safety indices, of course, does not include the effects of the epistemic
uncertainties. To include the effects of the unavoidable epistemic uncertainty,
assume (based on subjective judgment) that the median-value of Zmax of Fig. 5 will
have a c.o.v. of 0.20 with a corresponding lognormal distribution and a median of
1.0. On this basis, and performing a convolution integration using simple Monte
Carlo simulations, the histogram of the possible values of the safety index of the
tunnel is obtained as shown in Fig. 6, from which the mean, the 90% and 95%
values of the respective safety indices are 1.67, 2.13, and 2.33 (corresponding to
reliabilities of 0.9525, 0.9834, and 0.9900).
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5 Implications to Reliability-Based Design

The PDEM is effective for the analysis of the effects of aleatory uncertainty;
however, for design the effects of the epistemic uncertainty must be included.
The PDF of the ultimate performance function, Zmax, obtained by the PDEM
provides a rational and significant basis for including the effects of the epistemic
uncertainty in determining the proper safety index for the design of a complex
system. In this regard, the process for developing the proper safety index for
reliability-based design of a complex structure as a system is described in Ang
(2016).

In essence, the process for a reliability-based design of a complex structure as a
system can be summarized as follows:

1. Develop the minimum expected life-cycle cost E(LCC), design of the system.
2. Applying the PDEM, determine the PDF of the ultimate performance function

of the system, Zmax.
3. Assess the error (may be subjectively) in the mean-value of Zmax to represent the

underlying epistemic uncertainty; for practical convenience the PDF of this error
may be prescribed as a lognormal distribution with a mean of 1.0 and an
appropriate c.o.v. (or its equivalent range of possible errors).

4. Combine the effects of both types of uncertainty through the convolution
integral of the two PDFs in Steps 3 and 4. This will yield the PDF (or histogram)
of the safety index as a random variable.

5. From the PDF (or histogram) of Step 4, determine the safety index with 90% or
95% confidence appropriate to ensure the safe design of the complete system.

6 Conclusions

• Currently, the reliability assessment of complex engineering systems invariably
must rely on Monte Carlo simulations (MCS), but its application to complex
systems is limited.

• The PDEM provides an effective alternative procedure for assessing the relia-
bility of complex engineering systems.

• The PDEM represents a recent major break-through in the field of stochastic
dynamics, useful in reliability analysis and design of engineering systems,
especially relevant for highly complex systems.
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The Tail Equivalent Linearization Method
for Nonlinear Stochastic Processes,
Genesis and Developments

Marco Broccardo, Umberto Alibrandi, Ziqi Wang and Luca Garrè

Abstract This chapter aims to provide a general prospective of the Tail Equivalent
Linearization Method, TELM, by offering a review that starts with the original idea
and covers a broad array of developments, including a selection of the most recent
developments. The TELM is a linearization method that uses the first-order relia-
bility method (FORM) to define a tail-equivalent linear system (TELS) and estimate
the tail of the response distribution for nonlinear systems under stochastic inputs. In
comparison with conventional linearization methods, TELM has a superior accu-
racy in estimating the response distribution in the tail regions; therefore, it is
suitable for high reliability problems. Moreover, TELM is a non-parametric method
and it does not require the Gaussian assumption of the response. The TELS is
numerically defined by a discretized impulse-response function (IRF) or
frequency-response function (FRF), thus allowing higher flexibility in linearizing
nonlinear structural systems. The first part of the chapter focuses on the original
idea inspiring TELM. The second part offers fourth developments of the method,
which were studied by the authors of this chapter. These developments include:
TELM in frequency domain, TELM with sinc expansion formula, TELM for
multi-supported structures, and the secant hyperplane method giving rise to an
improved TELM.
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1 Introduction

In structural engineering, significant efforts have been dedicated to the develop-
ments of computational methods, which are able to predict the structural response
under deterministic excitations. However, in practice, large uncertainties in the
geometry, boundary conditions and material are present, and they play a key role in
determining the accuracy in predicting responses of interest. Moreover, the nature
of several excitations such as earthquakes, wind, or wave loadings, is intrinsically
stochastic. Consequently, in presence of these excitations, the structural response is
inevitably stochastic, and probabilistic methods of random vibration analysis are
necessary.

An important consideration in evaluating failure probabilities is to correctly
estimate the tails of the distributions of the structural responses, where failure
events for highly reliable systems are located. Further, failure events usually
involve nonlinear structural response. Consequently, there are two prevailing ele-
ments in the evaluation of the safety and reliability analysis of structural systems
that are: (i) An accurate prediction of nonlinear structural responses; and (ii) An
accurate estimation of the tail distribution of nonlinear structural responses.
The TELM is a recent linearization method (Fujimura and Der Kiureghian 2007),
which aims at providing accurate solutions for this class of problems. Taking the
pioneering work of Fujimura and Der Kiureghian as a starting point, this chapter
aims to provide a general prospective of the methods and a selection of the most
recent developments.

TELM genesis finds its roots in the grounding works of Der Kiureghian (2000),
and Koo et al. (2005), where FORM (Ditlevsen and Madsen 1996) was pioneered to
solve nonlinear random vibration problems. FORM is a time-invariant structural
reliability method; therefore, the setup of the dynamic problem needs to be such that
the randomness is completely split from time variability. This implies a dis-
cretization of the input in terms of a finite set of standard normal Gaussian random
variables, and a finite set of time variant functions (Der Kiureghian 2000); more-
over, it requires the definition of the failure event as a limit-state function. The
limit-state function is defined as the difference between a pre-defined threshold and
the nonlinear system response. Negative values of the limit-state function identify
the failure domain, and zero values define the frontier of the failure domain (i.e. the
limit-state surface). When the system is linear, it can be shown (Sect. 2) that the
limit state surface is a hyperplane and failure probability is given by close form
solution. Conversely for nonlinear systems, the limit-state surface is generally
nonlinear; then, the tail probability is obtained by FORM approximation. In this
method, the limit state-surface is approximated by a hyperplane tangent to the point
belonging to the limit-state surface and having the highest probability density value.
In structural reliability theory, this point is known as the “design point”, and it
contains important physical information regarding the behavior of the nonlinear
system. Departing from these early works, Fujimura and Der Kiureghian developed
the TELM and formalized the concept of the tail-equivalent linear system (TELS).
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Briefly stated, TELS is the hyperplane introduced by FORM linearization, and it is
physically identified by its Impulse-Response Function (IRF) or Frequency-
Response Function (FRF). Once the FRF or IRF are identified, linear random
vibration theory can be used to determine the statistics of the response. The original
method was developed in the time domain for inelastic systems and, in 2008, was
extended in frequency domain in the context of marine structures for a nonlinear
type of loading (Garrè and Der Kiureghian 2010). Further developments includes:
extension of the frequency domain for inelastic structures (Broccardo 2014),
multicomponent excitations (Broccardo and Der Kiureghian 2015), nonstationary
excitation (Broccardo and Der Kiureghian 2013), sinc expansion (Broccardo and
Der Kiureghian 2012), multi-supported structures (Wang and Der Kiureghian
2016), the secant hyperplane method (Alibrandi et al. 2016), and the tail probability
equivalent linearization method. Among these, this chapter presents a review of the
TELM with sinc expansion, the TELM for multi-supported structures, and the
secant hyperplane method.

2 The Original Time Domain TELM

2.1 Input Representation

In TELM, the stochastic excitation is represented by a linear combination of a set of
time variant basis functions s tð Þ= ½s1 tð Þ, . . . sNðtÞ� with independent standard nor-
mal random coefficients u= u1, . . . uN½ �T,

F tð Þ= sðtÞu. ð1Þ

The choice of the basis functions, s tð Þ, determines the autocorrelation function of
the input as well as the physical domain of the discretization. TELM was originally
developed in the time domain, using a discretized filtered white-noise, which can be
written as

F tð Þ= η tð Þ *W tð Þ½ �U tð Þ= ∫
t

0
η t− τjθð ÞW τð Þdτ, ð2Þ

where * denotes convolution, UðtÞ is the unit-step function, W tð Þ is the white-noise
process, and η tjθð Þ is the impulse response function (IRF) of a stable linear filter
with parameters θ. TELM implementation of (2) requires discretization of the time
axis. For a selected time step Δt and initial time t0 = 0, the white noise W τð Þ is
approximated with the following rectangular wave process:
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bW tð Þ= 1
Δt

∫
tn

tn− 1

W τð Þdτ, tn− 1 < t≤ tn n=1, . . . ,N. ð3Þ

Equation (3) is band-limited at frequency Ω= π Δ̸t (rad/s) and, for a given
white-noise spectral density S, has the variance σ2 = 2πS Δ̸t. By defining the
standard normal random variables un = bWðtnÞ ̸σ, n=1, . . . ,N, Eq. (3) is written in
the form

bW tð Þ= σ tð Þu, ð4Þ

where σðtÞ= σ1ðtÞ . . . σNðtÞ½ �, and

σnðtÞ= σ, tn− 1 < t≤ tn n=1, 2, . . . ,N

=0, otherwise.
ð5Þ

The discrete version of F tð Þ is obtained by replacing W tð Þ in Eq. (2) with bW tð Þ,
that is

bF tð Þ= η tjθð Þ * bW tð Þ
h i

= s tð Þu, ð6Þ

where

sn tð Þ= σ ∫
tn

tn− 1

η t− τjθð Þdτ, tn− 1 < t< tn n=1, 2, . . .N. ð7Þ

2.2 Time-Domain Response Representation, and TELS
Definition

The linear differential equation of a stable system subject to a stochastic input can
be written as

L X tð Þ½ �=F tð Þ, ð8Þ

where L ⋅½ � is a differential operator and XðtÞ is the response. When the system is
linear, the response is obtained by convolving its IRF hðtÞ with the input excitation
i.e.

X tð Þ= h tð Þ * bF tð ÞU tð Þ
h i

= a tð Þu, ð9Þ
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where a tð Þ= ½a1 tð Þ, . . . , aN tð Þ�, an tð Þ= ∫ t
0 h t− τð Þsn τð Þdτ. Observe that the

response is a linear function of the vector u. Conversely, when the system is
nonlinear, the response is a nonlinear function of u. In the latter case, for any given
u, a numerical scheme can be applied to (8) to compute the response. Therefore, the
response XðtÞ, in general, is either an explicit or an implicit function of the standard
normal random variables u, i.e. XðtÞ≡Xðt, uÞ.

Given a response threshold of interest x at a specific time tx, the tail probability is
defined as P½x<Xðtx, uÞ�. FORM can now be used to compute the tail probability as
Pr g x, tx,uð Þ<0½ �, where g x, tx,uð Þ= x−Xðtx,uÞ denotes the limit-state function.
In FORM the first-order approximation of the probability is computed by lin-
earizing the limit-state surface in the standard normal space at the so-called design
point u*. The design point belongs to the limit-state surface g x, tx,uð Þ=0 and has
minimum distance from the origin. This distance, denoted β, is known as the
reliability index. If the system is linear, the limit-state surface is a hyperplane with
gradient aðtÞ and the design point and the reliability index are given in closed form
(Fujimura and Der Kiureghian 2007) as:

u* x, txð Þ= x
a txð Þk k

a txð ÞT
a txð Þk k , ð10Þ

and

β x, txð Þ= x
a txð Þk k . ð11Þ

Furthermore, the gradient aðtxÞ can be written explicitly in terms of the design
point

a txð Þ= x
u*k k

u*T

u*k k , ð12Þ

and the tail probability has the simple and exact solution

Pr x<X tx,uð Þ½ �=Φ − β½ �, ð13Þ

where Φ½ ⋅ � denotes the standard normal cumulative probability function. In the
nonlinear case, the design point u* is obtained as the solution to the constrained
optimization problem u* = argminf uk kjg x, tx,uð Þ=0g. A gradient based opti-
mization algorithm (Liu and Der Kiureghian 1991) is commonly used to solve this
optimization. Given u*, the limit-state function is expanded in Taylor series at the
design point:
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g x, tx, u*
� �

= x− ½X tx,u*
� �

+∇uX tx, u*
� �

⋅ u−u*
� �

+h.o.t�, ð14Þ

where h.o.t stands for high order terms. The first-order approximation of
Pr½g x, tx,uð Þ<0� is then obtained by retaining the linear terms. The hyperplane
arising from the linearization completely defines TELS. Let aðtÞ denote the gradient
vector of this hyperplane. Then, for known sn tð Þ, the set of equations

∑
M

m=1
h tx − tmð Þsn tmð ÞΔt= an txð Þ, m=1, . . . ,M ≡N, and tx ≡ tM ð15Þ

is solved for the IRF h tð Þ of the TELS. The time resolution used in (15), denoted by
the subscript m, is the same as the time discretization used in (4), i.e., M ≡N. As
observed in Fujimura and Der Kiureghian (2007), this is a requirement to solve the
system in Eq. (15) for the original TELM in time domain. Nevertheless, for dis-
cretization methods using other basis functions, the time resolution M can be
selected independently from the number of random variables N. Once the IRF of the
TELS is obtained, methods of linear random vibration theory are used to compute
the statistics of the response for a specific set of thresholds. These represent
first-order approximations of the corresponding statistics of the nonlinear response.
Examples of these statistics for nonlinear systems can be found in Fujimura and Der
Kiureghian (2007), Der Kiureghian and Fujimura (2009) and Broccardo and Der
Kiureghian (2014).

3 TELM Analysis in Frequency Domain

3.1 Input Representation

An alternative to the time-domain discretization is the frequency-domain dis-
cretization (Shinozuka 1972; Shinozuka and Deodatis 1991). In this representation,
the basis functions are selected as random weighted sine and cosine, which results
in the canonical Fourier series with random coefficients. For a selected frequency
discretization step Δω, and given discrete frequency points ½ω1, . . . ,ωK � with
ωk =ωk− 1 +Δω, the general representation for a stationary process is written as

bF tð Þ= ∑
K

k =1
σk uk sin ωktð Þ+ uK + k cos ωktð Þ½ �= s tð Þu ð16Þ

where

s tð Þ= ½s1 tð Þ, . . . , sK tð Þ; sK +1 tð Þ, . . . , s2K tð Þ�, ð17Þ

sk tð Þ= σk sin ωktð Þ, sK + k tð Þ= σK + k cosðωktÞ, ð18Þ
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u= u1, . . . , uK ; uK +1, . . . , u2K½ �T, ð19Þ

in which σk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S ωkjθð ÞΔωp

, S ωkjθð Þ is a parametric power spectral density
(PSD) and θ is the set of parameters.

3.2 Frequency-Domain Response Representation,
and TELS Definition

In frequency domain, the governing equation of a stable linear system can be
written as

F L X tð Þ½ �f g ωð Þ=F F tð Þf g ωð Þ, ð20Þ

L XðωÞ� �
=FðωÞ, ð21Þ

where Ffg is the Fourier transform operator, Lfg is a linear operator in the fre-
quency domain, and X ωð Þ and F ωð Þ are the Fourier transforms of the response and
the input excitation, respectively. The steady-state response is obtained as

X ωð Þ=F h tð Þ *F tð Þf g ωð Þ=H ωð ÞF ωð Þ, ð22Þ

where H ωð Þ=F h tð Þf gðωÞ is the frequency-response function (FRF) of the system.
Using the the frequency-domain representation Eq. (16), the steady-state response
of the linear system is obtained as:

X tð Þ=F − 1 X ωð Þ� �
tð Þ= ∑

K

k =1
σk H ωkð Þj j uk sin θktð Þ+ uK + k cos θktð Þ½ �

= a tð Þu,
ð23Þ

where

a tð Þ= ½ak tð Þ, . . . , aK tð Þ; aK + k tð Þ, . . . , a2K tð Þ�, ð24Þ

ak tð Þ= σk H ωkð Þj j sinðθktÞ, aK + k tð Þ= σk H ωkð Þj j cosðθktÞ, ð25Þ

in which θk =ωkt+φk and H ωkð Þj j and φk respectively represent the modulus and
phase of the FRF of the linear system. It can be shown (Garrè and Der Kiureghian
2010) that the following relationships exist between the elements of the gradient
vector a txð Þ and the FRF:
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H ωkð Þj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak txð Þ2 + ak̄ txð Þ2

q
σk

, ð26Þ

φk =ωktx + tan− 1 ak txð Þ
aK + k txð Þ
� �

. ð27Þ

Given a general nonlinear system and a stochastic input described by Eq. (16),
the design point u* for the selected threshold and time point is first determined and
the gradient vector of the tangent plane, aðtxÞ, is computed from Eq. (12). The
latter, in conjunction with Eqs. (26)–(27), uniquely defines the FRF of the TELS.
Likewise in time domain, once the TELS is defined, then, linear random vibration
can be used to compute different statistics of the linearized model.

4 TELM Analysis with Sinc Basis Functions

In this section, we report a brief overview on the use of sinc basis functions for
representing band-limited stochastic processes and their implementation in TELM
analysis. A broader and more in depth treatment can be found in Broccardo (2014),
and Broccardo and Der Kiureghian (2012).

Band-limited stationary processes are an important subclass of stochastic pro-
cesses because in real applications and computer-based simulations, the spectrum,
usually, has a finite band limit. A stationary process is band limited if S ωð Þ=0 for
ωj j>Ω, with Ω being the band limit of the process. Within this subclass, the
band-limited white noise, i.e., processes for which S ωð Þ= S0 for ω≤Ω and 0
otherwise, is paramount. In fact, the band-limited white noise serves as the building
block for more general processes that are generated by use of filters and modulating
functions (Priestley 1965; Rezaeian and Der Kiureghian 2008).

In this section, we briefly show that the sinc function, defined as
sinc tð Þ= sinðtÞ t̸, is a suitable choice to construct a series expansion for
band-limited, white-noise processes. We restrict our focus to the class of strictly
Gaussian processes (i.e., the coefficients of the expansion are Gaussian random
variables). For convenience, a scaled version of the sinc function is introduced, i.e.

sincΔt tð Þ=
sin πt

Δt

� �
πt
Δt

� � , ð28Þ

with Δt≤ π Ω̸ and Ω being the band limit. It is easy to show that

F sincΔt tð Þ½ � ωð Þ= Δt
2π

Ππ Δ̸t, ð29Þ
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where F ⋅½ � is the Fourier Transform operator, Ππ Δ̸t =1 for ωj j< π Δ̸t, and
Ππ Δ̸t =0 otherwise. It can be shown (Osgood 2007) that any band-limited function
f ðtÞ can be represented by the expansion

f tð Þ= ∑
∞

n= −∞
f nΔtð ÞsincΔt t− nΔtð Þ. ð30Þ

In signal processing, Eq. (30) is known as sinc expansion or Whittaker-Shannon
interpolation formula. Remarkably, the coefficients of the series are simply the
sample values of the function at discrete points in time, from which the original
function can be exactly reconstructed. It can be shown (Osgood 2007) that

∫
∞

−∞
sincΔt t− nΔtð ÞsincΔt t−mΔtð Þdt= δmnΔt, ð31Þ

so that the sinc functions are orthogonal.
By considering the coefficients of the expansion in Eq. (30) as random variables,

in particular as i.i.d. zero-mean Gaussian random variables, a stationary,
band-limited, zero-mean, white-noise process is represented as

W tð Þ= ∑
∞

n= −∞
unσsincΔt t− nΔtð Þ. ð32Þ

where un are standard normal random variables and σ is the standard deviation. It
can be shown (Broccardo 2014) that the autocovariance function of Eq. (32) is
identical to that of a band-limited white noise. The convergence of the series is also
investigated in Broccardo (2014).

Considering Eq. (32), Eq. (1) can be rewritten as

bF tð Þ= bW tð Þ= ∑
N

n=1
unσsincΔt t− nΔtð Þ= s tð Þu, ð33Þ

where s tð Þ= ½σsincΔt t−Δtð Þ, . . . , σsincΔt t−NΔtð Þ� and u= ½u1, . . . , uN �. Given the
above representation of the input process, the implementation of the sinc expansion
into TELM analysis is rather straightforward and it follows the same steps of
Sect. 2. It is convenient to rewrite Eq. (15) in a matrix form, i.e.

Sh= a tMð Þ, ð34Þ

with

S=Δta
s1ðt1Þ ⋯ s1ðtMÞ
⋮ ⋱ ⋮
0 ⋯ sNðtMÞ

2
4

3
5, h= hðtM − t1Þ

⋮
hðtM − tMÞ

2
4

3
5, a txð Þ=

a1ðtMÞ
⋮

aNðtMÞ

2
4

3
5, ð35Þ
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where tx ≡ tM , and Δta is the time discretization step for numerical analysis. As we
have seen in Sect. 2, the original time-domain discretization requires the same time
resolution for both the stochastic discretization and the time discretization, that is
M ≡N. In nonlinear structural analysis, Δta needs to be chosen sufficiently small in
order to guarantee convergence of the solution, and usually this requirement leads
to a large number of random variables. However, a large number of these variables
represent high frequency content of the excitation, which may not be relevant for
the physics of the system. In the sinc formulation, there is no such constraint. In
fact, we can select a stochastic discretization rate, Δts, in the expansion in Eq. (33)
that is independent of Δta. Then, observe that Eq. (33) is a time-continuous process,
for which a different Δta can be chosen. Clearly, Δts must satisfy the condition
Δts < π

Ω, where Ω is the desired bandwidth.
When Δta ≠Δts, Eq. (35) is in rectangular form with dimension N ×M (in

general Δta <Δts, which impliesN <M). In that case, the solution of the system can
be found as min-norm solution of the system. However, there is a more straight-
forward approach to follow. In fact, one can recognize that the IRF is a band-limited
function which can itself be expressed with the sinc expansion. Thus, it is sufficient
to compute samples of the IRF, and to reconstruct the continuous function by the
sinc expansion. In other words, Eq. (35) is transformed into a square system with
dimension N ×N. This leads to a determined system of N equations in N unknowns,
which is solved by inversion as before. Observe that the size of the system is much
smaller than in the original formulation. Once the N samples of the IRF are com-
puted, the IRF is reconstructed by the sinc expansion, i.e.,

h tð Þ≃ ∑
N

n=1
h nΔtð ÞsincΔt t− nΔtð Þ. ð36Þ

4.1 Numerical Example

In this chapter, only an illustrative single-degree-of-freedom system (SDoF) is
presented, in Broccardo and Der Kiureghian (2016) the reader can find a more
realistic multi-degree-of-freedom (MDoF) example. The equation of motion of a
SDOF is written as

mU ̈ tð Þ+ cU ̇ tð Þ+Rin U tð Þ,U ̇ tð Þ	 

=F tð Þ, ð37Þ

where UðtÞ is the displacement, m the mass, c the damping coefficient, Rin½ ⋅ � the
restoring force, and FðtÞ the external force. In the case of ground motion, FðtÞ is
written as F tð Þ= −mUg̈ðtÞ, where Ug̈ðtÞ is the ground acceleration, here modeled
as a white-noise process. In this example, the non-degrading Bouc-Wen material
model, (Wen 1976; Bouc 1967), is selected for characterizing Rin, i.e.,
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Rin U tð Þ,U ̇ tð Þ	 

= k αU tð Þ+ 1− αð ÞZ tð Þ½ �, ð38Þ

where α is a nonlinearity parameter with α=1 denoting a linear case, k is the elastic
stiffness, and ZðtÞ is the hysteretic response that follows the differential law

Z ̇ tð Þ= − γ U ̇ tð Þ�� �� Z tð Þj jn ̄− 1 − η Z tð Þj jn ̄ U ̇ tð Þ+AU ̇ tð Þ, ð39Þ

in which γ, η, A and n ̄ are model parameters described in Wen (1976), Bouc (1967)
and Haukaas and Der Kiureghian (2004). Structural properties and model param-
eters are listed in Table 1, while Fig. 1 shows the hysteretic behavior of the system.
The response of interest is XðtÞ=UðtÞ, the point in time selected for the analysis is
tx =10 s, and the limit-state function is defined by the threshold x=3σ0, with
σ20 = πSm2 ð̸ckÞ being the mean-square response of the linear ðα=1Þ system. The
ground acceleration Ug̈ðtÞ is modelled as a stationary, zero-mean Gaussian
band-limited white noise simulated with the sinc expansion. The spectral density is
set at S=1 ½m2 ð̸rad s3Þ� for all simulations, while the band limit is varied according
to the selected time discretization step ts.

Table 2 shows the result of TELM analysis for selected band-limited white-noise
inputs. In all cases, the analysis integration step Δta =0.01 s is used for numerical
integration of the nonlinear response. Figure 2a shows the IRFs for the white-noise
inputs with band limits of 2.5 and 50 Hz. Observe that the two results are almost the
same. This suggests that the two inputs are essentially equivalent for studying the
reliability of the system. Figure 2b shows the frequency response functions (FRFs)

Table 1 Structural properties example 1

m (kg) uy (m) α c (kNs/m) k (kN/m) γ 1 ð̸mn ̄Þ η ð1 m̸n ̄Þ n̄ A

1E6 σ0 0.1 2πð Þ E6 2πð Þ2 E6 1 ̸ 2uy
� �n̄ 1 ̸ 2uy

� �n̄ 3 1

Fig. 1 Hysteretic behavior of
the single degree of freedom
system
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for the same inputs. From the FRFs, it is evident that the frequencies above 2.5 Hz
are not playing a significant role. Thus, we can select a Δts according to the desired
band limit and use the minimum number of random variables. The last two columns
of Table 2 list the reliability index and the CPU time (on a 2.8 GHz processor with
8 GB of RAM) for different Δts. Indeed, the use of the sinc expansion and inde-
pendent selection of ts leads to significant reduction in the computational time at a
negligible loss in accuracy. The sinc function, then can be used to consistently
reduce the computational cost. However, a clear knowledge of the input frequency
content and of the physic of the system is required. In Broccardo and Der Kiur-
eghian (2016), it is suggested an heuristic criteria that can be applied before
implementing the sinc expansion.

Table 2 Results example 1

Sampling rate Δts
(s)

Band limit
(Hz)

No. Random
variables

Reliability
index

CPU time
(s)

0.010 50.00 1001 3.122 836
0.020 20.00 501 3.135 321
0.050 10.00 201 3.122 291
0.100 5.00 101 3.122 113
0.200 2.50 51 3.133 51

Fig. 2 a Impulse-response function for a 2.5 Hz (red line) and 50 Hz (blue line) band-limited
white noise, b frequency-response function for the two band-limited white noise. The grey vertical
line denotes a 2.5 Hz band limit
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5 TELM for Multiple-Supported Excitation Problems

In this section the extension of TELM to multiple-supported excitation analysis is
introduced. More details regarding this extension can be found in Wang and Der
Kiureghian (2016).

5.1 Representation of Correlated Ground Motions

The stochastic displacement processes, instead of acceleration processes, are used
in the formulation of TELM for multiple-support excitation analysis. This is
because: (i) It is convenient to use ground displacement as input for structural
analysis with multiple-support excitations; and (ii) It is also convenient for for-
mulation of TELS with support displacement processes.

Let an array of zero-mean, jointly stationary Gaussian random processes
½D1ðtÞ . . .DmðtÞ�, representing the surface displacement processes for m sites, be
expressed as a Fourier series (Chatfield 2003)

DkðtÞ= ∑
n 2̸

p=1
½Apk cos ωpt

� �
+Bpk sin ωpt

� ��, k=1, . . . ,m ð40Þ

The Fourier coefficients Apk and Bpk are zero-mean, jointly Gaussian random
variables and are uncorrelated for different frequencies, i.e.
E½ApkAqk�=E½Bpk Bqk�=E½Apk Bqk�=0 for p≠ q. At frequency ωp, one has (Chat-
field 2003)

E ApkApl
	 


=E BpkBpl
	 


=
2Skk ωp

� �
Δω, if k= l

Re 2Skl ωp
� �	 


Δω, if k≠ l

(

E ApkBpl
	 


= −E BpkApl
	 


=
0, if k= l

− Im 2Skl ωp
� �	 


Δω, if k≠ l,

� ð41Þ

where SkkðωÞ is the two-sided auto-PSD of the displacement process at site k and
SklðωÞ is the cross-PSD of the displacement processes at sites k and l. Thus, given
the auto-PSDs and cross-PSDs of the ground displacements, the statistical prop-
erties of all the Fourier coefficients are easily determined. The auto-PSDs can be
specified using well-known theoretical models.

The cross-PSD between displacement processes at sites k and l can be expressed as

Skl ωð Þ= γkl ωð Þ Skk ωð ÞSll ωð Þ½ �1 2̸, ð42Þ
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where γkl is the coherency function that characterizes the spatial variability of the
ground motion. The coherency function is written as Der Kiureghian (1996)

γkl ωð Þ= γkl ωð Þj jexp i θwpkl ωð Þ+ θsrkl ωð Þ	 
� �
, ð43Þ

in which the real function γkl ωð Þj j characterizes the incoherence effect, whereas the
phase angles θwpkl ωð Þ and θsrkl ωð Þ characterize the wave-passage and site-response
effects, respectively. Note that, for stationary processes, the coherency function for
ground displacements is identical to the coherency function for ground
accelerations.

One widely used expression for the incoherence component is Luco and Wong
(1986)

γkl ωð Þj j= exp −
αωdkl
υs

 �2
" #

, ð44Þ

where α is an incoherence factor, dkl denotes the horizontal distance between sites
k and l, and υs is the shear-wave velocity of the medium. The phase angle due to the
wave-passage effect is given by Der Kiureghian (1996)

θwpkl ωð Þ= −
ωdLkl
υapp

, ð45Þ

in which dLkl is the projected horizontal distance in the longitudinal direction of
propagation of waves and υapp is the surface apparent wave velocity. The phase
angle due to the site-response effect is given by Der Kiureghian (1996)

θsrkl ωð Þ= tan− 1 Im HkðωÞHlðωÞ½ �
Re HkðωÞHlðωÞ½ � , ð46Þ

where HkðωÞ is the FRF of the soil column at site k. A single-degree-of-freedom
soil column model is used so that

Hk ωð Þ= ω2
k +2iζkωkω

ω2
k −ω2 + 2iζkωkω

. ð47Þ

To fully describe the array of ground displacement processes, m× n Fourier
coefficients in Eq. (40) are required. On the other hand, in the context of TELM, the
partially correlated Fourier coefficients should be transformed into the uncorrelated
standard normal space. For the 2m-vector Yp = ½Ap1 Bp1 . . . Apm Bpm�T at frequency
ωp, let Σpp denote the 2m×2m covariance matrix evaluated via (41). Using a
spectral decomposition technique (Li and Der Kiureghian 1993), Yp can be
transformed into the uncorrelated standard normal space by
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Yp = ∑
2m

i=1
Ωpiϕpiupi, p=1, . . . , n 2̸, ð48Þ

where Ω2
pi and ϕpi are eigenvalues and normalized eigenvectors of the covariance

matrix Σpp and upi are uncorrelated standard normal random variables. Using a
subset 2m̃p <2m of the terms in Eq. (48) for the largest eigenvalues, the number of
random variables can be reduced. The reduction of random variables becomes fairly
useful for problems with large set of support points, since high dimensional reli-
ability analysis is computationally demanding. Let

eTp = eΦp
eΛp, p=1, . . . , n 2̸ ð49Þ

denote the reduced transformation matrix, where eΦp is a 2m× 2m̃p matrix of the

2m̃p highest eigenvectors and eΛp is a 2m̃p ×2m̃p diagonal matrix with diagonal
elements Ωpi corresponding to the 2m̃p largest eigenvalues. Equation (48) is then
rewritten as

Yp ≅ eTpup, p=1, . . . , n 2̸, ð50Þ

where up = ½up1 . . . upð2m̃pÞ�T is the 2m̃p-vector of uncorrelated standard normal
random variables. In this way, the number of random variables for each frequency
ωp is reduced from 2m to 2m̃p. Note that m̃p may depend on p and may increase as
p increases with the upper bound m. This is because the coherency between higher
frequency components of a pair of ground motions is weaker than that between
lower frequency counterparts. Thus, the total number of random variables is
reduced from m× n to ∑n 2̸

p=1 2m̃p. Using Eq. (50), the Fourier coefficients Apk and
Bpk are expressed as

Apk = tp 2k− 1ð Þup = ∑
2m̃p

i=1
tp 2k− 1ð Þiupi, p=1, . . . , n 2̸, k=1, . . . ,m, ð51Þ

Bpk = tp 2kð Þup = ∑
2m̃p

i=1
tp 2kð Þiupi, p=1, . . . , n 2̸, k=1, . . . ,m, ð52Þ

where tp 2k− 1ð Þ and tp 2kð Þ are respectively the 2k− 1ð Þ-th and 2k-th row vectors of

the reduced transformation matrix eTp, and tp 2k− 1ð Þi and tp 2kð Þi are the i-th coordi-
nates of tp 2k− 1ð Þ and tp 2kð Þ, respectively. Since the Fourier coefficients are uncor-

related for different frequency points, the reduced transformation matrix eTp is
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computed independently for different p’s. Substituting Eqs. (51) and (52) into
Eq. (40), one finally obtains

Dk tð Þ= ∑
n 2̸

p=1
spkðtÞup = ∑

n 2̸

p=1
∑
2m̃p

i=1
spkiðtÞupi, k=1, . . . ,m, ð53Þ

where spkðtÞ= ½spk1ðtÞ . . . spkð2m̃pÞðtÞ�, and

spki tð Þ= tp 2k− 1ð Þi cos ωpt
� �

+ tp 2kð Þi sin ωpt
� �

. ð54Þ

5.2 Formulation of TELS for Multiple-Support Excitation
Analysis

The dynamic equilibrium equation for a linear structure with N unconstrained
degrees of freedom (DOF) and subjected to m support motions is given by Clough
and Penzien (1993)

M Mc

MT
c Mg

� �
Ẍ
D̈

� �
+

C Cc
CT

c Cg

� �
Ẋ
Ḋ

� �
+

K Kc

KT
c Kg

� �
X
D

� �
=

0
F

� �
, ð55Þ

where X= X1, . . . , XN½ �T is the N-vector of absolute displacements at the uncon-
strained DOF, D= D1, . . . , Dm½ �T is the m-vector of prescribed support displace-
ments, M, C and K are respectively N ×N mass, damping and stiffness matrices
associated with the unconstrained DOF, Mg, Cg and Kg are m×m matrices asso-
ciated with the support DOF, Mc, Cc and Kc are N ×m coupling matrices associ-
ated with both sets of DOF, and F is the m-vector of reacting forces at the support
DOF.

The conventional approach for analyzing such systems, (Clough and Penzien
1993), decomposes the total displacement vector at the unconstrained DOF into
pseudo-static and dynamic components. However, due to the presence of both
ground displacement and acceleration processes in the decomposition technique, it
is difficult to derive a simple formula to compute TELS.

A displacement-based formulation (Wilson 1998) is a simpler and more effective
approach for the present analysis. Using Eq. (55), the equation of equilibrium for
the superstructure with specified displacements at the support points is

MX ̈+CX ̇+KX= −KcD−CcḊ. ð56Þ

Assuming the damping forces on the right-hand side are negligible relative to the
elastic forces, the displacement-based equilibrium equation can be written in the
form
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MX ̈+CX ̇+KX= ∑
m

k=1
f kDk tð Þ, ð57Þ

where each displacement process DkðtÞ is associated with a vector f k obtained as
the negative of the k-th column of the coupling stiffness matrix Kc. Based on
Eq. (57), one can write Z tð Þ in the form

Z tð Þ= ∑
m

k=1
ckDk tð Þ+ ∑

m

k=1
∫
t

0
hdkðt− τÞDkðτÞdτ, ð58Þ

where ck is a time-invariant coefficient and hdkðtÞ is the IRF for the response quantity
of interest relative to a ground displacement at the k-th support DOF. The first sum
in Eq. (58) accounts for the contribution of the ground displacement to the response
quantity of interest. This term is identical to zero when the response quantity of
interest can be defined solely in terms of absolute displacements at the uncon-
strained DOF. Examples include internal forces in the deck of a bridge. However,
when the response quantity involves the ground displacement at a support, then the
first term in Eq. (58) must be included. An example is the drift in the pier of a
column, which equals the absolute displacement at the top of the pier minus the
support displacement. Note that the above formulation does not require decom-
position of the response into pseudo-static and dynamic components. Using the
Dirac-Delta function, Eq. (58) can be written as

Z tð Þ= ∑
m

k=1
∫
t

0
½hdk t− τð Þ+ ckδðt− τÞ�DkðτÞdτ= ∑

m

k=1
∫
t

0
hkðt− τÞDkðτÞdτ, ð59Þ

in which

hk tð Þ= hdk tð Þ+ ckδ tð Þ ð60Þ

is defined as the generalized IRF for the displacement loading at support DOF
k. The Fourier transform of hk tð Þ, assuming it exists, is expressed by

Hk ωð Þ=Hd
k ωð Þ+ ck, ð61Þ

where Hd
k ωð Þ is the Fourier transform of hdk tð Þ. According to Eq. (61) Hk ωð Þ may

possess a frequency-invariant component.
Substituting the stationary process (53) into (59) one has

Z t,uð Þ= ∑
m

k=1
∫
t

0
hkðt− τÞ ∑

n 2̸

p=1
∑
2m̃p

i=1
spkiðτÞupidτ= ∑

n 2̸

p=1
apðtÞup = a tð Þu, ð62Þ
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where u= ½u1 . . . un 2̸�T, up = ½up1 . . . upð2m̃pÞ�T, aðtÞ= ½a1ðtÞ . . . an 2̸ðtÞ�
ap = ½ap1ðtÞ . . . apð2m̃pÞðtÞ�, and

api tð Þ= ∑
m

k=1
∫
t

0
hk t− τð Þspki τð Þdτ, ð63Þ

where spkiðtÞ is defined in Eq. (54). Equation (63) provides the means for deter-
mining the TELS by solving the equation for hkðtÞ, given the gradient vector aðtÞ as
obtained from the design point. However, apiðtÞ is contributed by components from
all support DOF and it seems impossible to separately obtain the IRF for each
support DOF from Eq. (63).

To tackle the aforementioned problem, one can substitute the original dis-
placement process (40) expressed in terms of correlated Fourier coefficients Apk and
Bpk into Eq. (59), i.e.

Z t,uð Þ= ∑
m

k=1
∫
t

0
hkðt− τÞ ∑

n 2̸

p=1
½Apk cos ωpτ

� �
+Bpk sin ωpτ

� ��dτ= ∑
n 2̸

p=1
a′pðtÞYp = a′ tð ÞY,

ð64Þ

where Y= ½Y1 . . .Yn 2̸�T, Yp = ½Ap1 Bp1 . . .Apm Bpm�T, a′ðtÞ= ½a′1ðtÞ . . . a′n 2̸ðtÞ�,
a′pðtÞ= ½a′p1ðtÞa ̄′p1ðtÞ . . . a′pm tð Þa ̄′pmðtÞ�, and

a′pkðtÞ= ∫
t

0
hkðt− τÞ cos ωpτ

� �
dτ, ð65Þ

a ̄′pk tð Þ= ∫
t

0
hk t− τð Þ sin ωpτ

� �
dτ. ð66Þ

Unlike the gradient vector apðtÞ in (62), the contributions of frequency com-
ponents from each support DOF in a′pðtÞ are separated.

Using Eq. (50), it is easy to show that a′p tð Þ and apðtÞ are related by

a′p tð ÞeTp = apðtÞ, p=1, . . . , n 2̸, ð67Þ

in which eTp is the 2m×2m̃p transformation matrix defined in Eq. (49). Equa-
tion (55) provides a means to determine the 2m-vector a′p tð Þ from the 2m̃p-vector

apðtÞ. However, clearly one cannot have the exact solution of a′p tð Þ, unless eTp is a
square matrix, which happens when m̃p =m and the number of random variables is
not reduced. Using Eq. (41), a′p tð Þ can be approximately obtained as
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a′p tð Þ≅ apðtÞeT+
p , p=1, . . . , n 2̸, ð68Þ

where eT+
p is a 2m̃p ×2m pseudo-inverse of eTp. Furthermore, using Eq. (49), it is

easy to show that eT+
p is given by

eT+
p = eΛ− 1

p
eΦT
p , p=1, . . . , n 2̸, ð69Þ

where eΦp and eΛp are defined following Eq. (49). It can be shown that Eqs. (65) and
(66) have the form

a′pkðtÞ= HkðωpÞ
�� �� cos ωpt+φpk

� �
, p=1, . . . , n 2̸, k=1, . . . ,m, ð70Þ

a ̄′pk tð Þ= HkðωpÞ
�� �� sin ωpt+φpk

� �
, p=1, . . . , n 2̸, k=1, . . . ,m, ð71Þ

where jHk ωp
� �j is the modulus of the FRF and φpk is the associated phase angle of

the response relative the input ground displacement at the k th support DOF. Using
the above equations, one finally has

HkðωpÞ
�� ��=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a′pkðtÞ
h i2

+ a ̄′pk tð Þ
h i2r

, p=1, . . . , n 2̸, k=1, . . . ,m, ð72Þ

and

tanðωpt+φpkÞ= a ̄′pk tð Þ a̸′pkðtÞ, p=1, . . . , n 2̸, k=1, . . . ,m ð73Þ

In summary, to identify the TELS in multi-support seismic excitation analysis,
first the design point u* of the nonlinear system is used in Eq. (12) to determine the
gradient vector aðtÞ. This is then used in Eq. (68) to obtain the transformed gradient
vector a′ðtÞ. Finally, the modulus and phase of the FRF with respect to each support
DOF are computed by use of Eqs. (72) and (73). When the number of random
variables is reduced, one can obtain only approximate solutions of the FRFs due to
the approximation involved in Eq. (56).

5.3 Random Vibration Analysis

For TELM analysis with multiple-support excitations, applying the principle of
superposition to the TELS, the two-sided PSD of the response quantity Z tð Þ for
threshold z is expressed as
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SZZ ω, zð Þ= ∑
m

k=1
∑
m

l=1
Hkðω, zÞH*

l ðω, zÞSkl ωð Þ, ð74Þ

in which the dependence of the FRFs and the response PSD on the threshold z is
explicitly noted. With the auto-PSD of Z tð Þ obtained from Eq. (74), various
response statistics can be conveniently computed using well-known linear random
vibration solutions.

6 The Secant Hyperplane Method and the Tail Probability
Equivalent Linearization Method

TELM is based on FORM, and with the latter shares the main shortcomings and
challenges: (i) In high-dimensional spaces the evaluation of the design point is
challenging; (ii) In high-dimensional spaces the sampling points are distant from the
design point, consequently some researchers have questioned the applicability of
FORM (Valdebenito et al. 2010); (iii) For some problems the FORM approxima-
tion is not satisfactory, and it is not possible to know in advance the accuracy of the
solution. In this section these issues are discussed. First, the geometry of
high-dimensional spaces is described in some detail, and it is shown because
FORM, in specific cases, works properly in high dimensions (Broccardo 2014;
Alibrandi et al. 2015). Secondly, it is presented a novel linear response surface,
named Secant Hyperplane Method (SHM) which improves the accuracy of FORM
(Alibrandi et al. 2016). SHM gives rise to the Tail Probability Equivalent Lin-
earization Method (TPELM), which improves the accuracy with respect to TELM
(Alibrandi and Mosalam 2016); moreover, it provides credible bounds to the esti-
mation of the quantity of interest. A simple numerical example shows the main
features of FORM/SHM and TELM/TPELM in terms of robustness, accuracy and
efficiency.

6.1 High-Dimensional Spaces

Typically, the input discretizations both in the time or frequency domain gives rise to
high dimensional reliability problems. Recently, it has been shown that in high
dimensions all the samples fall far away from the design point (Katafygiotis and Zuev
2008;Valdebenito et al. 2010). This leads to the question regarding the applicability of
local approximations like FORM in high dimensions. However, as a matter of fact,
FORM has been successfully applied in many applications of stochastic dynamic
analysis (Der Kiureghian 2000; Koo et al. 2005; Fujimura and Der Kiureghian 2007;
Garrè and Der Kiureghian 2010; Broccardo and Der Kiureghian 2012, 2013, 2015;
Alibrandi and Der Kiureghian 2012; Broccardo 2014; Alibrandi and Koh 2015;
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Alibrandi et al. 2015;Alibrandi andMosalam 2016;Wang andDer Kiureghian 2016).
To understand how FORM provides sufficiently accurate results in very
high-dimensional reliability problems, it is necessary to gain insight into the geometry
of very high-dimensional spaces (Alibrandi et al. 2015; Francescetti 2016). The
samples drawn from a multivariate normal standard distribution fall within an N-
dimensional sphere, and therefore the knowledge of its geometry is paramount.

In a N-dimensional space u1, u2, . . . , uN the equation of a ball, BNðRÞ, of radius
R, centered in the origin, is∑N

n un ≤R2. For n=2 and n=3 the circle and the sphere
are obtained, respectively. The surface, SNðRÞ, of the ball, known as hypersphere,
has equation ∑N

n un =R2. The geometry of N-dimensional spheres has some
counter-intuitive properties. Some significant ones and their implications within the
context of high-dimensional reliability analysis are described below.

Property 1 In high dimensions, an N-dimensional sphere has finite volume only if
R> constant ×

ffiffiffiffi
N

p
Since the volume measures the total “content” of an object, including the internal

space, the volume of the N-dimensional ball, BNðRÞ, and hypersphere SNðRÞ are
identical. The volume of the hypersphere is defined as Vn Rð Þ=Vol SN Rð Þ½ �=KNRN ,
where KN is the volume of the N-dimensional unit sphere, i.e.,

KN =Vol SN 1ð Þ½ �= π
N
2

Γ N
2 + 1
� � , ð75Þ

where Γð ⋅ Þ is the Gamma function; moreover, using Stirling’s approximation

lim
N→∞

KN = lim
N→∞

π
N
2

Γ N
2 + 1
� � = 1ffiffiffiffiffiffiffi

Nπ
p

ffiffiffiffiffiffiffiffi
2πe
N

r !N

. ð76Þ

For n=1, 2, 3 we have K1 = 2, K2 = π, K3 = ð4 3̸Þπ, while the corresponding
volumes are V1 = 2R (line), V2 = πR2 (circle), V3 = 4

3

� �
πR3 (sphere), as expected.

Figure 3 shows the volume of the unit hypersphere. Observe that KN increases
rapidly up to N ∼ 5, while for N >5 it decrease and it asymptotically tends to zero
for N→∞. From Eqs. (75) and (76), one can observe that for a large N the radius

of a hypersphere of unit volume approaches from above RN ∼ 1ffiffiffiffiffi
2πe

p
� � ffiffiffiffi

N
p

. This

implies that in high dimensions the N-dimensional hypersphere has finite volume if
R> constant ×

ffiffiffiffi
N

p
.

Property 2 Vast majority of the volume of a sphere with radius R lies around a
thin shell near the boundary.
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Let us consider a thin shell SNðR, εÞ of width ε along the surface of a hyper-
sphere of radius R. The volume of the thin shell is given as Vol SN R, εð Þ½ �=
Vol SN Rð Þ½ �−Vol SN R− εð Þ½ �, i.e. it is equal to the difference between the volumes
of two N-dimensional hyperspheres of radius R and R− ε, respectively. Consider
the ratio

λN =
Vol SN R− εð Þ½ �
Vol SN Rð Þ½ � =

KNðR− εÞN
KNRN = 1−

ε

R

� �N
. ð77Þ

Observe that for every 0< ε<R, λN → 0 tends to zero as N→∞. This implies
that in high dimensions the center of the sphere is essentially void, and that the
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Fig. 3 Volume of the unit hypersphere

Fig. 4 Concentration of the volume in a hypershere: a near a thin shell around the boundary,
b near an equatorial slab detected by an arbitrarily chosen North Pole
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whole volume will be contained in the thin shell SNðR, εÞ, see Fig. 4. This
counter-intuitive property of high dimensional geometry is known as the phe-
nomenon of the volume concentration near the boundary.

Property 3 Vast majority of the volume lies near the equator.
Let us define now the “North Pole” en̂ as an arbitrarily chosen vector on the

hypersphere, while the “equatorial plane” is a hyperplane perpendicular to the
North Pole. Having chosen a North Pole vector en̂, the equatorial hyperplane has
equation u ⋅ en̂ =0. Consider the equatorial slab bounded by the hyperplanes
u ⋅ en̂ = − δn and u ⋅ en̂ = δn, so that it is defined as Slab e ̂n, δnð Þ≡ fu∈RN : − δn ≤u ⋅
en̂ ≤ δng. It can be shown that for N→∞ the following relationship holds
(Francescetti 2016)

Vol Slabðen̂, δnÞ½ �
Vol SN Rð Þ½ � =

1ffiffiffiffiffi
2π

p ∫
δn

− δn

e−
t2
2dt ð78Þ

It is seen that the volume of the N-dimensional sphere accumulates near the
equator. Note that while the radius of the hypersphere grows as

ffiffiffiffi
N

p
, the width of

the slab is constant. Therefore, in high dimensions all the volume is, surprisingly,
concentrated within an equatorial slab which represents a small region with respect
to the hypersphere. This because, as above described, the volume of the sphere is
finite only if R≥ constant ×

ffiffiffiffi
N

p
. For illustration, let us choose N =900 and δn =3,

so that gives Vol Slabðen̂, δnÞ½ �∼Vol SN Rð Þ½ �; it is noted that in this example R=30,
and δn R̸=0.10. This property is also known as the phenomenon of the volume
concentration near a thin equatorial slab, see Fig. 5. It is here underlined that the
North Pole vector represented by the axis e ̂n has been arbitrarily chosen. This
implies that all the volume of the sphere is not only concentrated in the equatorial
slab detected by the direction en̂, but also in any slab detected by e ̂n, for any m≠ n.

Fig. 5 Samples drawn from
a multivariate normal
distribution in high
dimensions
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Summarizing: (i) In high dimensions a hypersphere has finite volume if
> constant ×

ffiffiffiffi
N

p
, (ii) the N-dimensional hypersphere center is void, and almost all

the volume concentrates around a thin shell Ξshell ≡ SðR, εÞ near the boundary, and
(iii) Given an arbitrarily North Pole vector, almost all the volume concentrates in an
equatorial slab Ξslabðen̂Þ≡ Slabðen̂, δnÞ, whose width does not depend upon N. As an
important consequence of these peculiar properties, the volume concentrates over a
relatively very small region Ξshellðen̂Þ≡ΞshellðuÞ ∩Ξslabðen̂Þ, irrespective of the
chosen North Pole.

6.2 The Multi-variate Normal Standard Distribution

The multivariate normal pdf has equation fu uð Þ= 2πð Þ−N 2̸expð− 0.5 uk k2Þ. It can
be shown (Katafygiotis and Zuev 2008) that the samples generated from fu uð Þ
belong to an N-dimensional thin shell. Therefore, for any chosen probabilistic
direction en̂, most of the samples belong to a region Ξðu, e ̂nÞ≡ΞshellðuÞ
∩Ξslabðu, en̂Þ, as above defined, see Fig. 5.

It is easy to see that R= uk k follows the chi distribution, whose mean and
variance are

μR Nð Þ=
ffiffiffi
2

p Γ N +1
2

� �
Γ N

2

� � , σ2R nð Þ= n− μ2R nð Þ. ð79Þ

In high dimensions the following asymptotic limits hold:

lim
N→∞

μR Nð Þ=
ffiffiffiffi
N

p
, lim

N→∞
σ2R =

1
2
. ð80Þ

Therefore in high dimensional spaces the samples belong to a thin shell Ξshell

whose average radius is μR,N→∞ =
ffiffiffiffi
N

p
and its width is μR,N→∞ =1 2̸ (Katafygiotis

and Zuev 2008; Hurtado 2012; Broccardo 2014). This may also be seen easily by
generating, for example, Ns samples from a N-variate normal standard distribution
uðkÞ, k=1, 2, ..,Ns and evaluating their distance from the origin RðkÞ = uk kðkÞ. For
sufficiently large N, the random variable R= uk k approximately follows a Gaussian
distribution whose mean and variance are μR,N→∞ and σR,N→∞, respectively. Here,
it is underlined that the sampling points belong also to an “equatorial slab”
Ξslabðu, en̂Þ, whose semi-width is independent of N. This may be shown by pro-
jecting the samples along a generic direction e ̂n, obtaining the distance δðkÞ = uðkÞen̂,
where the random variable δðkÞ follows a normal standard distribution.
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6.3 Structural Reliability Analysis in High Dimensions

The N-dimensional thin shell drawn from the multivariate normal standard distri-
bution is symmetrical around the origin. Therefore, each axis e ̂n can be considered
as a probabilistic direction, and each region Ξðu, en̂Þ is equally important. However,
in the framework of structural reliability analysis, because of the presence of a limit
state surface, the polar-symmetry of the sphere itself is lost, and a most important
direction eôpt can be defined. The region of probabilistic interest Ω is defined as the
intersection between the thin shell ΞshellðuÞ and the equatorial slab Ξslabðu, eôptÞ
containing the limit state g uð Þ=0, so that Ω≡Ξopt =Ξðu, eôptÞ, see Fig. 6. Here it is
noted that, because of the peculiar geometry of these spaces, the target limit state in
the region of probabilistic interest may be well approximated by a linear response
surface of equation bopt − aopt ⋅ u=0, whose slope is eôpt = aopt ̸ aopt

�� ��. This because
the optimal hyperplane is the best linear classifier of the sampling points belonging
to the region of probabilistic interest; consequently the probability of wrong clas-
sification is minimum, and the tail probability given by bopt − aopt ⋅ u=0 is close to
the target. The distance of the optimal hyperplane from the origin along e ̂opt is
δopt = bopt ̸ aopt

�� ��≅ βG, where βG is the generalized reliability index, so that
Pf =Φ − βGð Þ≅Φð− δoptÞ.

Therefore, in high dimensions the main challenge is finding the “most important
direction(s)” eôpt detecting Ξopt. The simplest choice is represented from the design
point direction eôpt = aopt ̸ aopt

�� ��. Extensive numerical experimentation where
FORM has been applied has shown the suitability of this choice in many cases of
practical interest.

Fig. 6 Samples drawn from
a multivariate normal
distribution in high
dimensions
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6.4 Applicability of FORM in High Dimensions

Although FORM is a powerful tool, it has some known drawbacks: (i) in some cases
its approximation is not satisfactory, and (ii) it is not possible to know in advance the
accuracy of the solution. It is here underlined that for the evaluation of the tail
probability, one is not interested in the value gðt, x, uÞ of the limit state function, but
in its sign, z t, x,uð Þ= sign½gðt, x,uÞ�. A function, which separates the points
belonging to the safe set from the ones belonging to the failure set, is named
classifier, since it attributes a class (“safe” or “failure”) to each point. The limit state
surface g t, x,uð Þ=0 is the target classifier, while a hyperplane which approximates
the limit state, is able to classify correctly only a limited number of points. Clearly,
because the hyperplane works well, it is necessary that classify correctly the points at
least in the region of probabilistic interest Ξopt =Ξðu, eôptÞ. In this sense FORMmay
work well because it is able to classify a high number of points, and this happens
when the limit state in the region of probabilistic interest does not depart signifi-
cantly from the FORM hyperplane. In view of the geometry of high-dimensional
spaces previously described, the FORM approximation is satisfactory if (i) The
design point direction is close to the most important direction, (ii) e ̂* t, xð Þ≅ e ̂opt t, xð Þ,
(iii) The limit state is flat, (iv) There are not multiple comparable design points.

6.5 The Secant Hyperplane Method (SHM) for Stochastic
Dynamic Analysis

The optimal hyperplane of equation bopt t, xð Þ− aopt t, xð Þ ⋅ u=0, see also Fig. 6,
may give an improvement of the FORM solution, when needed. The optimal
hyperplane is determined by considering the reliability problem as a classification
approach, giving rise to the Secant Hyperplane Method (SHM) (Alibrandi et al.
2016). The aim of SHM is finding the secant hyperplane gSH t, x,uð Þ= bsh
− aopt t, xð Þ ⋅ u=0 able to classify correctly the highest number of sampling points
in the region of probabilistic interest. This task is accomplished by using as a
classification approach a method based on the Support Vector Method (SVM).
In SVM the margin is defined as the minimum distance between points belonging to
different classes, and it is given as M t, xð Þ=2 ̸ aðt, xÞk k (Alibrandi et al. 2016).
According to the SVM and the theory of the statistical learning, if the two classes
are linearly separable, the optimal hyperplane is the one with maximum margin.
Since the limit state is not linear, it is not possible to identify a hyperplane, which
correctly classifies all the sampling points. To this aim, we relax the classification
constraints by introducing “slack variables” ξn t, xð Þ≥ 0, giving a measure of the
departure from the condition of correct classification. In particular, when 0< ξn ≤ 1
the point is well classified but falls inside the margin, whereas when ξn >1 the point
is wrongly classified. Finally, if ξn =0, the point is classified correctly and it falls
outside the margin. In this case, we have a linear model with soft margin since some
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points may lie inside the margin. Under this hypothesis, the optimal separating
hyperplane has the maximum margin with minimum classification error. Mathe-
matically, the second term can be obtained by minimizing the total number of
points wrongly classified through the function Φ ξð Þ= ∑M

n=1 IðξnÞ, where I ξnð Þ=1
if ξn >0, and I ξnð Þ=1 if ξn ≤ 0. Unfortunately, the minimization of ΦðξÞ represents
a challenging computational problem, because of the nonlinearity of I ξnð Þ. The idea
is to approximate the counter function as Φ ξð Þ≅ ∑M

n=1 ξn, under the condition
ξn ≥ 0. The Secant Hyperplane (SH) is given by the optimization problem:

min
w, b, ξ

1
2 a t, xð Þk k2 + ∑

M

n=1
ξn t, xð Þ

s.t. zi t, xð Þ b t, xð Þ− a t, xð Þ ⋅ un½ �≥ 1− ξn t, xð Þ, n=1, . . . ,M
ξn t, xð Þ≥ 0 n=1, . . . ,M

8>><
>>: ð81Þ

where u1, . . . ,uM are M sampling points whose limit state function is
yn = gðt, x, unÞ, and zn x, tð Þ= sign½gðt, x,unÞ�. Note that in the objective function
f a, ξð Þ= 1

2 a t, xð Þ2 + ∑M
n=1 ξn t, xð Þ, the first term maximizes the margin, while the

second term minimizes the sum of the errors. The contributions of these two terms
could also be weighted f a, ξð Þ= ð1−CÞ 12 a t, xð Þk k2 +C∑M

n=1 ξn t, xð Þ, with
0<C<1. The margin becomes wider for lower values of C. Observe (Alibrandi
et al. 2016) that the slope of the SH is given by all the points internal to the margin,
whose width depends on C. Provided the margin is wide enough, the value of
C does not affect the convergence of the method. Extensive numerical experi-
mentation has shown that a good tradeoff value is C = 1/2, which implies (81). For
a given set of classified points, from (81) the secant hyperplane gSH t, x,uð Þ=
bSH t, xð Þ− aSH t, xð Þ ⋅ u is obtained, together with its lower and upper bounding
hyperplanes gLH t, x,uð Þ= bUH t, xð Þ− aSH t, xð Þ ⋅ u and gUH t, x,uð Þ= bLH t, xð Þ− aSH
t, xð Þ ⋅ u, with bLH ≤ bSH ≤ bUH , see Fig. 7. Correspondingly the secant reliability
index βSH = bSH ̸ aSHk k is obtained, together with the lower and upper reliability
indices βLH = bLH j̸ aSHj jj and βUH = bUH j̸jaSH jj, respectively, with βLH ≤ βSH
≤ βUH . With regard to the reliability indices, it is possible to define the failure
probabilities Pf ,LH =Φð− βUHÞ, Pf , SH =Φð− βSHÞ, and Pf ,UH =Φð− βLHÞ, Φ½ ⋅ �
being the normal standard CDF, while Pf ,LH ≤Pf , SH ≤Pf ,UH . Although Pf , LH and
Pf ,UH are bounds of Pf , SH , they are also the bounds of the target failure probability
Pf if one chooses a sufficient number of sampling points such that Pf , SH ≅Pf . It is
however worth noting that with a reduced number of sampling points, whereas
Pf , SH is quite different from Pf , in some specific cases Pf ,LH and Pf ,UH may not
bound Pf . In such sense they can be seen as credible lower and upper approxi-
mations of Pf , given the available information, represented by the margin-driven
simulated samples.

An iterative procedure is implemented in SHM. First a set of sampling points
uðkÞ =1, . . . ,K, along the design point direction e ̂* t, xð Þ= u*ðt, xÞ ̸ u*ðt, xÞ�� �� is
chosen. The points belonging to the design point direction are classified (safe and
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failure points, respectively). A first SH is built through (81), together with its
bounding hyperplanes. This first model is likely to be parallel to the FORM
hyperplane. Then, an iterative procedure is developed. At the k-th iteration, a new
point uk inside the margin is chosen and classified; by using (81) the updated SH is
determined, as well as the secant reliability index βSH together with its bounds βLH
and βUH . The iterative procedure ends when the convergence is achieved. It is noted
that the sampling points uðkÞ are generated through a crude MCS, and they are
accepted (with consequent evaluation of the limit state function) only if they fall
inside the margin, see Fig. 8. This implies that they belong to the region

Ξ u, e ̂ kð Þ
SH

� �
=Ξshell uð Þ ∩Ξslabðu, e ̂ kð Þ

SHÞ, e ̂ kð Þ
SHðt, xÞ being the slope of the SH at the k-th

iteration.

Fig. 7 FORM and SHM for
structural reliability analysis

Fig. 8 Iterative procedure underlying SHM. a Only the points inside the margin of the k-th secant
hyperplane are classified (filled circles), b building of the (k + 1)-th secant hyperplane
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Since uðkÞ fall far away from the origin, SHM is not affected by the presence of
multiple comparable design points. The iterative procedure of SHM adaptively
modifies the slope of the hyperplane until it converges to e*̂SHðt, xÞ, the latter being
very close to the optimal, i.e. e*̂SHðt, xÞ≅ eôptðt, xÞ. In other words, SHM gives the
optimal linear classifier in the sense that it is able to detect the equatorial slab where
the maximum linear separability between the safe and the failure sets is achieved.

As noted in Wang and Song (2016) it is not easy to distinguish if a reliability
problem is in low or high dimensions. However, the accuracy of SHM is not
affected by the number of dimensions: it works well if classify correctly most
sampling points in the region of probabilistic interest Ω; the latter being defined as a
very narrow region around the design point in low dimensions, or a very small
region close to Ξopt in high dimensions.

The Secant Hyperplane overcomes the main drawbacks of FORM, but it requires
an increased computational effort. Extensive numerical experimentation has shown
that it requires on average 400–500 analyses for each threshold, in addition to the
analyses required to evaluate the design point, irrespective of the number of random
variables or the level of the required probability.

6.6 The Tail Probability Equivalent Linearization Method
(TPELM)

The Tail-Probability-Equivalent-Linear System (TPELS) based on SHM is defined
as the linear system obtained by minimizing the difference between the tail prob-
ability of TPELS with respect to the original nonlinear system. The TPELS is a
linear system of equation XTPELS t, x, uð Þ= aTPELS t, xð Þ ⋅ u, where

aTPELS t, xð Þ= x
wSH t, xð Þ
bSH t, xð Þ . ð82Þ

It is noted that its limit state function is gTPELS t, x,uð Þ= x− aTPELS t, xð Þ ⋅ u, while
its reliability index is βTPELS t, xð Þ= x ̸ aTPELS t, xð Þk k. It is easy to verify that
βTPELS t, xð Þ≡ βSH t, xð Þ, and that the two limit state equations gTPELS t, x, uð Þ=0 and
gSH t, x, uð Þ=0 coincide.

6.7 Numerical Example

It is here considered the case of an oscillator with nonlinear damping where it is
known that FORM does not work effectively (Alibrandi et al. 2015, 2016; Alibrandi
and Mosalam 2016)
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mX ̈+ cX ̇ X ̇2 + kX2
h i

+ kX =mW tð Þ, ð83Þ

where m=1, c=1 and k=100 are the mass, damping and stiffness coefficients,
corresponding to a natural frequency ω0 = 10 rad/s and damping ratio ζ0 = 5%. The
stochastic ground acceleration is defined as a white-noise process WðtÞ of intensity
Sw =1m2 s̸3. The probability density function of the response in stationary state is
known in closed form (Lutes and Sarkani 2004), and it is used to benchmark the
approximations of the tail probability given by FORM and SHM. The system
achieves stationarity after about t=5 s, and the frequency step in is chosen as
Δω= ð2πÞ t̸=1.256 rad s̸. The power spectrum density has been discretized from
ω1 = 0 rad s̸ to ωn =30 rad s̸, giving rise to n=25 harmonic components and
N =2n=50 standard normal random variables. Let σ2 be the variance of the
response at t. The tail probability is calculated for 12 normalized threshold values
x σ̸ ranging from 0 to 3 with an increment of 0.25.

We use the design point direction as a preliminary important direction for the
equatorial slab. It is worth underlining that the evaluation of the design point in high
dimensional spaces is challenging. Indeed, the gradient-based procedures are not
very efficient in high dimension. Typically, finite element codes do not provide
gradients, which can be approximated by the finite differences method. This implies
that each iteration of the iterative procedure require N +1=51 dynamic compu-
tations, so that the computational cost may be excessive. Moreover, in
high-dimensional spaces the accuracy of the numerical response gradient is gen-
erally poor. These shortcomings may be overcome by using the Direct Differenti-
ation Method (Zhang and Der Kiureghian 1993; Haukaas and Der Kiureghian
2004). Here we determine the design point with a relatively low computational
effort using a suitable free-derivative algorithm developed to this aim (Alibrandi
and Der Kiureghian 2012; Alibrandi and Mosalam 2016) which requires only 20
analyses per threshold. For the evaluation of the design point through MCFM
requires 20 analyses per threshold. SHM reaches convergence after additional 400
analyses, but the quality of the approximation is greatly improved compared to
FORM. Figure 9a compares the target tail probability known in closed form (circle
markers) with the results obtained by FORM (thin line) and SHM solutions (thick
line). The example shows the excellent accuracy of SHM for stochastic dynamic
analysis using only 420 analyses per threshold. The good performance of SHM is
demonstrated in this example, whereas FORM results are outside the bounds
obtained by SHM. In Fig. 9b TELM and TPELM are applied for the evaluation of
the first passage probability. Here the comparison of the two tail equivalent lin-
earization methods is developed with MCS with 100,000 samples (represented with
circle markers). As expected, it is noted that the results of TELM and TPELM are
coherent with the corresponding FORM/SHM, where TPELM outperforms sig-
nificantly in accuracy TELM.

It should be noted that the hyperplanes corresponding to FORM and SHM
hyperplanes can have very different slopes. The results show that the angle between
the two hyperplanes may be greater than 40°, especially for low thresholds. FORM
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is defined as the tangent plane to the limit state and passing through the design
point. SHM detects the optimal direction e ̂opt of the equatorial slab, which is
equivalent to determining the direction of maximum linear separability between
safe points and failure points. For illustration, consider a threshold x σ̸ =0.5, where
the angle between the two hyperplanes is ϑ=45◦. In Fig. 10 we present a sample of
1,000 points where the safe points are shown as square markers and failure points as
filled circle markers.

In the ordinate axis is represented the distance of the point along the design point
direction e ̂* (Fig. 10a) and e ̂SH (Fig. 10b). The results show clearly that the
direction detected by SHM guarantees a better linear separability between the safe
and failure sets, so that SHM is likely to detect the optimal equatorial slab Ξopt.

Fig. 9 Response of a SDOF with nonlinear damping. a Tail Probability, b first-passage
probability

Fig. 10 Classification of a set of 1,000 samples along the direction detected by a FORM, b SHM
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7 Conclusions

This chapter presented a general description of the TELM method for solving
nonlinear stochastic dynamics problems. Starting from the pioneering use of FORM
for solving nonlinear stochastic dynamic problem, the first part of this chapter
focuses on the original time-domain development of TELM. The second part of the
chapter offers four major advancements of the method, which were studied sepa-
rately by the authors of this chapter. These developments include: TELM in fre-
quency domain, TELM with sinc expansion formula, TELM for multi-supported
structures, and the secant hyperplane method giving rise to an improved TELM. In
particular, the frequency-domain discretization offers a different physical interpre-
tation of the linearization method, and it is particularly suitable for stationary
excitations. The TELM based on sinc expansion provides a reduction of the number
of random variables used to represent the input excitation. In many practical
applications, this leads to a significant computational benefit. TELM for
multi-supported structures focuses on the extension of the method for nonlinear
systems subjected to correlated multi-support seismic excitations. Finally, after a
detailed review of the geometry of high-dimensional spaces, the secant hyperplane
method is introduced. This leads to a significant improvement of the accuracy of
TELM.
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Estimate of Small First Passage
Probabilities of Nonlinear Random
Vibration Systems

Jun He

Abstract Estimates of the small probabilities of failure, i.e., small first passage
probabilities, of nonlinear random vibration systems is of great importance in the
structural reliability analysis and reliability-based design. Some methods have been
developed for estimating the small probabilities, but their computational efficiency
is not high enough for analyzing the large-scale systems. In order to overcome the
challenge of the computational efficiency of the estimate of the small probabilities, a
new method is developed. The method mainly consists of two uncoupled proce-
dures, i.e., modeling the distribution tails of the extreme values of the responses of
nonlinear random vibration systems and constructing the Copula of the extreme
values of the nonlinear responses. The former is used to estimate the small first
passage probabilities of the scalar response processes, while the latter is used to
estimate the small first passage probabilities of the vector response processes. Some
numerical examples are presented to demonstrate the accuracy and efficiency of the
developed method.

1 Introduction

The estimate of the small probabilities of failure of nonlinear dynamic systems to
natural hazard excitations, e.g., earthquake ground motion, wind or wave action, is
an important part in the structural reliability analysis and reliability-based design. In
here, the probability of failure is defined as the probability of first-passage failure,
i.e., the probability that the system responses exceed in magnitude the given
thresholds in the reference time T. For a structural element, we usually consider a
scalar response process in the first-passage failure analysis. However, for a struc-
tural system, we have to consider the vector response processes in order to analyze
the related first-passage failure.
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The estimate of the small probabilities of failure of nonlinear random vibration
systems belongs to random vibration analysis, however, the classical methods
developed for random vibration analysis, such as the Monte Carlo method (Shi-
nozuka 1972), equivalent linearization method (Wen 1980), Fokker-Planck equa-
tion method (Lin and Cai 2004), moment closure method (Lutes and Sarkani 2004),
and so on, cannot efficiently estimate the small probabilities of failure due to the
their respective limitations. Therefore, more efficient methods should be developed
for the estimate of the small probabilities of failure. Through improving the
Metropolis algorithm (Liu 2001), Au and Beck proposed the subset simulation
method for estimating the small probabilities of failure (Au and Beck 2001). The
subset simulation method is more efficient than the Monte Carlo method and
suitable for those nonlinear systems whose deterministic solutions are available.
However, the subset simulation method requires a new simulation run when a
different and smaller reference time is considered and, therefore, it may still need a
lot of CPU time to estimate the small probabilities of failure of nonlinear systems by
using the subset simulation method. Based on the equivalent linearization technique
and the first-order reliability method (FORM), Fujimura and Der Kiureghian pro-
posed the tail-equivalent linearization method for estimating the distribution tails of
the responses of nonlinear random vibration systems, whereby the small proba-
bilities of failure of the systems can be obtained efficiently (Fujimura and Der
Kiureghian 2007). In general, the tail-equivalent linearization method is more
accurate than the equivalent linearization method and more efficient than the subset
simulation method for estimating the small probabilities of first-passage failure of
nonlinear random vibration systems. However, in the cases that the non-stationary
responses are considered, i.e., the reference time in the failure analysis is relative
short, the tail-equivalent linearization method should carry out an equivalent lin-
earization procedure at each discrete time point and, consequently, the computa-
tional cost may become high. On the other hand, it is possible to encounter the
problem of multiple design points in the tail-equivalent linearization method since
the method needs to utilize the design point related to the high response level to
determine the unit impulse response function of the equivalent linearization system.
Based on the assumption that the extreme value distribution of the nonlinear ran-
dom response of interest asymptotically approaches a Gumbel distribution or
generalized extreme distribution, Naess and Gaidai (2008) and Grigoriu and
Samorodnitsky (2014), respectively, proposed the Monte Carlo methods based on
extreme value theory for estimating the small probabilities of first-passage failure of
nonlinear random vibration systems. However, the Monte Carlo methods require
that the reference times are sufficiently long such that the extreme values of the
responses of interest can be assumed to follow the Gumbel distribution or gener-
alized extreme value distributions approximately. In 2009, Bucher proposed an
asymptotic sampling technique for estimating the small probabilities of failure
through using the asymptotic linearity of the generalized reliability index (Bucher
2009). The computational efficiency of the asymptotic sampling technique is almost
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the same as that of the subset simulation method. However, the asymptotic sam-
pling technique may also lead to the large discrepancies of the estimates of the
small probabilities of failure if the support points required by the method are chosen
inappropriately. Overall, although some methods have been developed recently for
estimating the small probabilities of first-passage failure of nonlinear random
vibration systems, efficient estimate of the small probabilities is still a challenging
task.

It has been shown that the small probabilities of first-passage failure are identical
to the corresponding exceedance probabilities of the extreme values of the
responses considered. Therefore, they can be calculated if the tail distributions of
the extreme responses can be determined. As mentioned above, the generalized
extreme value distribution has been adopted to fit the extreme values of the non-
linear random responses with sufficiently long reference times. However, in the
cases of short reference times, the assumption that the extreme value responses
follow the generalized extreme value distribution is invalid and, consequently, the
resulting small probabilities of failure may exhibit large numerical errors. Hence,
more suitable distributions should be chosen to fit the extreme response distribu-
tions, particularly in the tail regions, such that the small probabilities of failure can
be estimated with enough high accuracy.

More recently, a new distribution called the shifted generalized lognormal dis-
tribution (SGLD) for fitting four moments has been developed (Low 2013). The
distribution has a rich flexibility in shape that nearly encompasses the entire
skewness-kurtosis region permissible for unimodal densities and has been applied
to fit several theoretical distributions and actual datasets with very favorable results,
particularly in the tail regions. If we can prove that through defining the suitable
parameters the SGLD also has a rich flexibility in fitting the tail distributions of the
extreme values of the nonlinear random responses of interest, then we can develop a
new method similar to the Monte Carlo simulation methods based on the extreme
value theory to estimate the small probabilities of first-passage failure of nonlinear
random systems. This new simulation method will be described in detail in below.

2 Brief Description of the SGLD

The SGLD is developed by combining the three-parameter lognormal distribution
(Cohen and Whitten 1980) and generalized Gaussian distribution (GGD) (Nadara-
jah 2005). The three-parameter lognormal distribution is a unimodal and asym-
metric distribution. The probability density function (PDF) of a three-parameter
lognormal variable X is

fX =
1

x− λð Þ ffiffiffiffiffi
2π

p
σ
exp −

1
2σ2

ln x− λð Þ− μ½ �2
� �

, x> λ ð1Þ
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where λ, eμ and σ are parameters for location, scale and shape, respectively. The
mean, variance and skewness of X are given by

μX = λ+ exp μ+
σ2

2

� �
ð2Þ

σ2X = eσ
2
− 1

� �
e2μ+ σ2 ð3Þ

γX = eσ
2
+ 2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2 − 1

p
ð4Þ

Equation (4) indicates that γX increases monotonically with σ, and it ranges from
zero to infinity. In addition, X approaches the normal distribution when σ→ 0, in
which case the skewness vanishes.

The GGD is a unimodal and symmetric distribution that covers a broad range of
kurtosis. Its PDF is given by

fZ zð Þ= α exp −
1
r

z− μj j
σ

� �r	 

, z ∈ −∞,∞ð Þ ð5Þ

α=
1

2r1 r̸σΓ 1+ 1
r

� � ð6Þ

where μ and σ are the location and scale parameters, and r>0 is the shape
parameter that controls the kurtosis, Γð ⋅ Þ denotes the gamma function.

The expressions of the mean, variance and kurtosis of Z can be also derived from
Eq. (5):

μZ = μ ð7Þ

σ2Z =
σ2Γ 3

r

� �
Γ 1

r

� � ð8Þ

λZ =
Γ 1

r

� �
Γ 5

r

� �
Γ2 3

r

� � ð9Þ

Similar to the Gaussian distribution, the PDF defined by Eq. (5) is bell-shaped
and unimodal with the mode at z = 0. The shape parameter r determines the
thickness of the distribution tails. When 0< r<2, the GGD model has a wider tail
than the Gaussian distribution and for r>2 it has a narrower tail. The
special/limiting cases of the GGD model are: when r=1, the GGD reduces to the
Laplace distribution; for r=2, the GGD reduces to the Gaussian distribution;
whereas in the limiting case r→∞ the GGD converges to the uniform distribution
in the interval μZ −

ffiffiffi
3

p
σZ, μZ +

ffiffiffi
3

p
σZ

� �
.
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Through defining Z = ln Y and introducing location by using Y = X − bð Þ θ̸, the
PDF of the SGLD can be obtained from Eq. (5):

fX xð Þ= α

x− b
exp −

1
rσr

ln
x− b
θ



r� �

, x> b ð10Þ

where b is the location parameter, θ is the scale parameter, 0 < σ and 0< r are the
shape parameters.

The CDF of the SGLD can be derived from Eq. (11):

FXðxÞ= 1
2
+

1
2
sgn

x− b
θ

− 1
� �

ϱ
1
r
,

lnx− b
θ
σ

 r
r

0
@

1
A, x> b ð11Þ

in which sgn( ⋅ Þ denotes the signum function, and ϱ is the lower incomplete gamma

function ratio, i.e., ϱ s, zð Þ= Rz
0
ts− 1e− tdt ̸ Γ sð Þ.

The PDF defined by Eq. (10) is unimodal and asymmetric for σ >0. In the
limiting case σ→ 0 the SGLD converges to the GGD. Other special/limiting cases
of the SGLD model are: when r=2 and b=0, the SGLD reduces to the lognormal
distribution; when r=2 and b≠ 0, the SGLD reduces to the 3-parameter lognormal
distribution; when r=1 and b=0, the SGLD reduces to the Log-Laplace distri-
bution; whereas for r→∞ and b=0 the SGLD converges to the Log-uniform
distribution.

By making the substitution p=FX xð Þ in the left-side-hand of Eq. (11) and noting
that sgn x− bð Þ θ̸− 1ð Þ= sgn p− 1 ̸2ð Þ, the inverse CDF of the SGLD is obtained as

x=F − 1
X ðpÞ

= θexp sgn p−
1
2

� �
σ rϱ− 1 1

r
,

2p− 1
sgn p− 1

2

� �
 !" #1 ̸r

8<
:

9=
;+ b, for p≠

1
2

ð12Þ

and x= b+ θ for p=1 ̸2. Where, ϱ− 1 is the inverse of the lower incomplete gamma
function ratio, defined such that z= ϱ− 1 s,ωð Þ corresponds with ω= ϱ s, zð Þ.

Although the SGLD is a 4-parameter distribution, the parameter estimation of a
SGLD only involves two variables, i.e., the shape parameters σ and r, since for each
fixed pair σ, rð Þ the location and scale parameters can be computed from θ= σX σ̸Y
and b= μX − θμY , where μX and σX are the mean value and standard deviation of
X and μY and σY are the mean value and standard deviation of the reduced variable
Y = X − bð Þ θ̸, which can be computed from the fixed σ and r by the following
raw-moments formula [11]
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E Yk� �
=

1
Γ 1 r̸ð Þ ∑

∞

n=0

kσð Þ2n
2nð Þ! r

2n r̸Γ
2n+1

r

� �
ð13Þ

Since the above SGLD is developed from the three-parameter lognormal dis-
tribution, it is only suitable for the case that skewness γX is larger than zero. For
γX <0, we can first consider the absolute value of γX , and subsequently mirror the
resulting PDF about x= μX , i.e., replace x by 2μX − x on the right-hand-side of
Eq. (10). The same operation applies to Eq. (11), expect that the resulting
expression should be subtracted from unity. Thus, the PDF and CDF for γX <0 are
given by

fXðxÞ= α

2μX − b− x
exp −

1
rσr

ln
2μX − b− x

θ



r� �

, x<2μX − b ð14Þ

FXðxÞ= 1
2
−

1
2
sgn

2μX − b− x
θ

− 1
� �

ϱ
1
r
,

ln2μX − b− x
θ
σ

 r
r

0
B@

1
CA, x<2μX − b ð15Þ

in which b, θ, σ and r are determined from γXj j.
From Eq. (15), we can derived the inverse CDF for γX <0

x=F − 1
X pð Þ

=2μX − θexp sgn
1
2
− p

� �
σ rϱ− 1 1

r
,

1− 2p
sgn 1

2 − p
� �

 !" #1 r̸
8<
:

9=
;− b, for p≠

1
2

ð16Þ

and x=2μX − θ− b for p=1 ̸2.
Given the mean, variance, skewness and kurtosis of X, then the parameters b, θ,

σ and r can be estimated by using the method of moments (Low 2013). However,
for a nonlinear random vibration system, the computation of the first four moments
of the nonlinear random responses often needs a large number of simulations and,
consequently, the computational cost may be infeasible. In addition, there may be
an unacceptable deviation between the tail of the SGLD with the parameters esti-
mated from the first four moments of the response of interest and the actual tail of
the distribution of the response. Hence, a more efficient and accurate parameter
estimation method should be proposed when the SGLD is used to fit the tail of the
distribution of the nonlinear random response. In here, a new parameter estimation
method called 2-level method is proposed, which will be descripted in detail
Sect. 4.
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3 Small Probabilities of First-Passage Failure

The reliability analysis of a nonlinear random vibration system usually involves the
estimation of the small first passage probabilities of a scalar and/or vector response
process within the reference time T. For the case of a scalar response process X tð Þ,
the expression of the first passage probabilities can be written as

Pf b, Tð Þ=P ∃τ ∈ 0, T½ �:X τð Þ> bf g ð17Þ

in which Pf ⋅ g is the probability operator and b is the high response threshold level.
The above expression can be equivalently written as

Pf ðb,TÞ=1−P max0≤ t≤ T XðtÞ≤ bf g
=1−FA bð Þ ð18Þ

where A= max0≤ t≤T X tð Þ denotes the maximum value of X tð Þ within the reference
time T and FAð ⋅ Þ is the CDF of A.

If the reliability analysis of a nonlinear random vibration system involves a
vector response process X1 tð Þ, . . . , XK tð Þð Þ, i.e., the first-passage failure is defined
as the event that at least one of the component processes of the vector response
X1 tð Þ, . . . , XK tð Þð Þ exceeds in magnitude its respective high thresholds within the
reference time T, then the small probabilities of first-passage failure can be
expressed as

Pf ðb, TÞ=P ∃τ ∈ 0, T½ �: ⋃
K

k =1
Xk τð Þ> bk

� �

=P ⋃
K

k=1
Ak > bk

� � ð19Þ

in which b= b1, . . . , bKð Þ denotes the vector thresholds.
Equivalently, the above expression can be rewritten as

Pf ðb,TÞ=1−P ⋂
K

k=1
Ak ≤ bk

� �
=1−FAðbÞ

ð20Þ

where FAð ⋅ Þ is the joint CDF of A= A1, . . . ,AKð Þ.
Equations (18) and (20) show that the small probabilities of first-passage failure

of nonlinear random vibration systems can be obtained through computing the
exceedance probabilities of the extreme values and multivariate extreme values of
the corresponding response processes of the high response threshold levels. In the
following section, we will descript an efficient method for modeling the distributions
of the extreme values and multivariate extreme values at the tail regions in detail.
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4 Extreme Value Distributions of Nonlinear Random
Responses

4.1 Marginal Distribution and Its Parameter Estimate

As aforementioned, since the SGLD has such a flexibility and nearly encompasses
the entire skewness-kurtosis region permissible for unimodal densities, we use the
SGLD to approximate the tail distribution of the extreme value A of the response
X tð Þ. The approximate PDF and CDF of A, therefore, can be written as

fA að Þ= α

x− b
exp −

1
rσr

ln
a− b
θ



r� �

, x> b ð21Þ

FA að Þ= 1
2
+

1
2
sgn

a− b
θ

− 1
� �

ϱ
1
r
,

lna− b
θ
σ

 r
r

0
@

1
A, x> b ð22Þ

for skewness of A is larger than zero, i.e., γA >0, and

fA að Þ= α

2μX − b− a
exp −

1
rσr

ln
2μX − b− a

θ



r� �

, a<2μX − b ð23Þ

FA að Þ= 1
2
−

1
2
sgn

2μX − b− a
θ

− 1
� �

ϱ
1
r
,

ln2μX − b− a
θ
σ

 r
r

0
B@

1
CA, a<2μX − b ð24Þ

for γA <0.
Since only two shape parameters σ and r are needed to be estimated to construct

a SGLD, when two exceedance probabilities and the corresponding values of A are
known, the model parameters b, θ, σ and r can be computed and the resulting
SGLD may give the reasonable estimates of the exceedance probabilities that are
smaller than the known exceedance probabilities. In most cases, if we want to
obtain the exceedance probabilities up to 10− 4 and even 10− 5 with sufficient
accuracy, the two relatively large exceedance probabilities that are used to estimate
the model parameters of the SGLDs can be set to be P1 ≈ 10− 1 and P2 ≈ 10− 2.

The estimation of the model parameters b, θ, σ and r of the SGLD generally
needs some response samples of the system considered. Therefore, we can
approximately estimate the mean μA and skewness γA of the extreme value A. If
γA >0, then we unchanged the set of the response samples. However, if γA <0, then
we should mirror the set of the response samples about the sample mean μA. After
the above treatment, we can obtain the two values a1 and a2 of A with the
exceedance probabilities P1 and P2 from the set of the response samples. Through
replacing FA að Þ by 1−P1 and 1−P2 on the left-hand-side of Eq. (21) and a by a1
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and a2 on the right-hand-side of Eq. (22), respectively, we can obtain the following
two nonlinear equations

1−P1 =
1
2
+

1
2
sgn

a1 − b
θ

− 1
� �

ϱ
1
r
,

lna1 − b
θ
σ



r

r

0
BB@

1
CCA ð25Þ

1−P2 =
1
2
+

1
2
sgn

a2 − b
θ

− 1
� �

ϱ
1
r
,

lna2 − b
θ
σ



r

r

0
BB@

1
CCA ð26Þ

Utilizing the relationship between the parameters b and θ and the parameters σ
and r, the nonlinear equations can be solved by using Newton’s method. To
accelerate the convergence, as in the method of moments, the initial guess of the
iteration solution procedure can be set to r 1ð Þ =2 and σ 1ð Þ that satisfies

γAj j= e σ 1ð Þð Þ2 + 2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e σ 1ð Þð Þ2 − 1
p

.

Once determining the model parameters b, θ, σ and r, we can obtain the
approximate distribution of the response X tð Þ. When the sample skewness γA is
larger than zero, then the approximate PDF and CDF of X tð Þ are given by Eqs. (21)
and (22). For the case that the sample skewness γA is less than zero, the approximate
PDF and CDF of X tð Þ are given by Eqs. (23) and (24).

Apparently, the discrepancies of the estimates of the probabilities P1 and, par-
ticularly, P2 will contribute to the errors of the small exceedance probabilities of
A. Therefore, it is necessary to choose a low discrepancy sampling method, e.g., the
pseudo MC simulation method (Dai and Wang 2009) or the correlation-reduction
Latin Hypercube sampling (CLHS) method (Owen 1994), to estimate P1 and P2.

4.2 Joint Distribution and Its Parameter Estimate

When we think of the FAð ⋅ Þ as an ordinary joint distribution of the random vari-
ables A1, . . . ,AK , we can obtain FAð ⋅ Þ via multivariate Copulas such as multi-
variate normal Copula, multivariate Clayton Copula and multivariate Gumbel
Copula (Nelsen 2006). Since the tail distributions of A1, . . . ,AK can be determined
by the SGLDs with the parameters estimated by the above descripted 2-level
method, from Sklar’s theorem the Copulas in terms of the SGLDs can give suffi-
ciently accurate joint probabilities of A= A1, . . . ,AKð Þ at the tail region of interest
(Nelsen 2006). Among the above mentioned multivariate Copulas, since it is rel-
atively simple to estimate the Copula parameters of the normal Copula, we use the
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multivariate normal Copula to model the joint distribution FAð ⋅ Þ. The PDF and
CDF of the normal Copula of A are given by Liu and Der Kiureghian (1986).

fAðaÞ= fA1 a1ð ÞfA2 a2ð Þ . . . fAK aKð Þ φK v,R′
� �

φ v1ð Þφ v2ð Þ . . .φ vKð Þ ð27Þ

FA að Þ=ΦK v,R′
� � ð28Þ

where fAkð ⋅ Þ is the SGLD of Ak, k=1, . . . ,K, v= v1, . . . , vKð Þ, in which
vk =Φ− 1 FAk akð Þ½ �, here Φ− 1ð ⋅ Þ is the inverse standard normal CDF, φð ⋅ Þ is the
standard normal PDF, and φK v,R′

� �
and ΦK v,R′

� �
are, respectively, n-dimensional

normal PDF and CDF of zero means, unit standard deviations, and correlation
matrix R′. The elements ρ′ij of R

′ are defined in terms of the correlation coefficients
ρij between Ai and Aj through the integral relationship

ρij =
Z∞
−∞

Z∞
−∞

ai − μAi

σAi

� �
a− μAj

σAj

� �
φ2 vi, vj, ρ′ij
� �

dvidvj ð29Þ

where μAi
, μAj

, σAi and σAj are, respectively, the sample mean values and standard
deviations of Ai and Aj, which are estimated from the set of the response samples
that is used by the 2-level method. The above integral equation can be easily solved
by Newton’s method.

Once obtaining the marginal and joint distributions of A by using the method
described above, we can easily compute the conditional probabilities of A, which
are identical to the conditional first passage probabilities of the responses of
interest. It should be pointed out that only if the mappings vk =Φ− 1 FAk akð Þ½ � are
one to one and the correlation matrix R′ is positive definite the normal Copula is
valid. Since the SGLD FA akð Þ are continuous and strictly increasing and the dif-

ferences ρij − ρ′ij

  are small, the preconditions for the normal Copula are always

satisfied in the present study.

5 Procedure for the Estimation of Small Probabilities
of Failure

According to the above description, the steps for estimating the small probabilities
of failure of nonlinear random vibration systems can be summarized as follows:

Step 1. Generate N (in general, N <3000) response samples of the system of
interest and estimate their mean values, variances, skewness, skewness and
correlation coefficient of X tð Þ and X ̇ tð Þ from the set of response samples.
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Step 2. Construct SGLDs fitting the tail distributions of the extreme values of the
responses of interest by the proposed 2-level method.

Step 3. Construct the normal Copula fitting the tail of the joint distribution of the
extreme values of the responses of interest by the proposed method.

Step 4. Estimate the exceedance probabilities and joint exceedance probabilities of
the extreme values of the responses of interest at high threshold levels from
the obtained marginal and joint distributions. The estimates of the excee-
dance probabilities and joint exceedance probabilities are identical to the
corresponding small probabilities of first-passage failure of the system.

6 Numerical Examples

6.1 Investigation of the Efficiency of the 2-Level Method
for Estimating the Parameters of the SGLDs

To illustrate the efficiency of the 2-level method for estimating the parameters of the
SGLDs, we consider the four theoretical distributions, i.e., gamma, Weibull,
Inverse-Gaussian and F- distributions, which have been used by Low to show the
accuracy and flexibility of the SGLD in fitting unimodal distributions (Low 2013).
The PDFs of the distributions are given as, respectively

fX xð Þ= xk− 1e− x

Γ kð Þ , 0 < x<∞ ð30Þ

fX xð Þ= kxk− 1e− xk , 0 < x<∞ ð31Þ

fX xð Þ=
ffiffiffiffiffiffiffiffiffiffi
k

2πx3

r
e− k x− 1ð Þ2 2̸x, 0 < x<∞ ð32Þ

fX xð Þ= 1
xB k1 ̸2, k2 ̸2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1xð Þk1kk22

k1x+ k2ð Þk1 + k2

s
, 0 < x<∞ ð33Þ

in which k, k1 and k2 are the distribution parameters and B( ⋅ Þ is the beta function.
We set P1 = 10− 1 and P2 = 10− 2 in the following numerical computation. For

each distribution, 500 sample sets, each has 2000 samples, are generated by the
Latin Hypercube sampling (LHS) method, thereby 500 groups b, θ, σ, rð Þ are esti-
mated by using the extrapolation method for each distribution. For each distribu-
tion, from the resulting 500 SGLDs, 500 groups of the approximate estimates of the
exceedance probabilities corresponding to the values x* =F − 1

X P*ð Þ can be obtained,
here F − 1

X ð ⋅ Þ denote the inverse CDF of the involved variable and P* are set to be
10− 4 and 10− 5, respectively. Based on the above computation, for each
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distribution, the mean values and coefficients of variation (COV) of the approxi-
mate exceedance probabilities corresponding to x* are obtained. As compared, from
the generated sample sets and the method of moments, we also obtain the corre-
sponding mean value and COV foe each distribution. The computing results are
listed in Table 1. It can be seen in Table 1 that, in most cases, the extrapolation
method provides better mean values of the estimates of the small exceedance
probabilities than the method of moments, and, in all cases, the extrapolation
method permits smaller COV of the estimates of the small exceedance probabilities
than the method of moments. This indicates that, at least for the four distributions,
the extrapolation method is a more efficient method for estimating the model
parameters of a SGLD. More numerical analyses demonstrate that with the increase
of the number of the samples the accuracy of the extrapolation method becomes
higher and the variety of it becomes less. The numerical analyses also show that
under the same samples the extrapolation method is always more efficient than the
method of moments.

Table 1 SGLD approximation at the tails of the theoretical distributionsa

Distributions P* = 10− 4 P* = 10− 5

Method of
moments

2-level method Method of
moments

2-level method

Mean
[10− 4]

COV Mean
[10− 4]

COV Mean
[10− 5]

COV Mean
[10− 5]

COV

Gamma

k = 1 1.77 0.453 1.66 0.078 3.24 0.702 2.77 0.134
k = 2 1.81 0.411 1.49 0.045 3.21 0.622 2.26 0.070
k = 3 1.69 0.354 1.37 0.039 2.76 0.538 1.95 0.057
k = 4 1.67 0.353 1.30 0.042 2.65 0.534 1.75 0.062
Weibull

k = 2 1.50 0.197 1.43 0.041 2.25 0.296 2.10 0.060
k = 3 1.15 0.129 1.21 0.050 1.41 0.193 1.53 0.067
Inverse Gaussian

k = 2 1.11 0.788 1.68 0.578 1.76 1.321 3.09 0.807
k = 3 1.14 0.815 1.61 0.694 1.79 1.430 2.90 0.971
k = 4 1.26 0.836 1.60 0.701 2.08 1.472 2.83 1.011
k = 5 1.21 0.829 1.55 0.702 1.91 1.406 2.63 1.011
F-

k1 = 5,
k2 = 15

1.90 0.591 0.94 0.147 2.81 0.845 0.86 0.279

aMean the mean value of the estimated probability; COV the coefficient of variation of the
estimated probability
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6.2 Hysteretic Oscillator Excited by a Stationary Gaussian
Process

Consider a Bouc-Wen hysteretic oscillator subjected to a stationary Gaussian
process F tð Þ which is defined by the set of differential equations

X ̈+2ζω0X ̇+ω2
0 αX + 1− αð ÞU½ �=F tð Þ ð34Þ

U ̇= − γ X ̇
 U Uj jn− 1 − βX ̇ Uj jn +AX ̇ ð35Þ

in which ω0 = π, ζ=0.05, F tð Þ is a stationary Gaussian process with the mean value
μF and the single-side power spectral density function (PSD) SFF ωð Þ=1, and the
parameters in the Bouc-Wen law are set to α=0.05, n=3, A=1, and

γ = β=A ̸ 2xny
� �

, where xy =0.5σ0 is the yield displacement, here σ0 = 1.5 is the

estimated standard deviation of X tð Þ at t=20 s to the zero-mean, stationary
Gaussian excitation process. The excitation process is expanded by the spectral
representation method with the upper-cut frequency ωU =40ω0 and equal fre-
quency interval Δω=0.1π, i.e.,

F tð Þ= μF + ∑
NF

i=0
Ai cosωit+Bi sinωitð Þ ð36Þ

where Ai and Bi are independent normal random variables with mean zero and
variances σ2i =2SFF ωið ÞΔω, here ωi = iΔω, and NF =ωU Δ̸ω=400 is the number
of the frequency intervals in discretization. Therefore, there are total 800 variables
in the spectral representation and the resulting simulation process has a period
T0 = 2π Δ̸ω=20 s.

The failure of the system is defined as the event that the absolute value of the
system response, i.e., X tð Þj j, exceeds in magnitude the high threshold level b in the
reference time T =20 s. First, we consider the case that the mean value of F tð Þ is
μF =0. By using the MC simulation method and CLHS method, we generate,
respectively, 1000000 and 2000 response samples of the system. Note that length of
time of the samples are all 20 s. Setting P1 = 10− 1 and P2 = 10− 2 in the extrapo-
lation method, we estimate the model parameters of the SGLDs fitting the extreme
response Z, thereby the first passage probabilities of the response X tð Þj j are com-
puted by the developed method and plotted in Fig. 1. As compared, the first passage
probabilities directly estimated from the 1,000,000 and 2000 response samples are
also plotted in Fig. 1. We can see in Fig. 1 that for the small thresholds the first
passage probabilities estimated from the developed method almost completely
agree with those obtained from the MC simulation method and CLHS, however, for
the large thresholds, the first passage probabilities estimated from the developed
method based on the 2000 response samples agree very well with those estimated
from the developed method based on the 1,000,000 response samples, even for the
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probabilities as low as 10− 7, while both the MC simulation method and CLHS
method cannot provide useful information about the small first passage probabilities
as low as 10−7–10−5 since the numbers of the response samples are not sufficiently
large.

Secondly, we consider the case that the mean value of F tð Þ is μF =5. Similarly,
we estimate, respectively, the first passage probabilities by using the developed
method and the simulation methods and plot them in Fig. 2. It can be seen in Fig. 2
that, for the small thresholds, there is a good agreement between the estimated
probabilities. For the large thresholds, there are little deviations between the
probabilities estimated by the developed method based on the 2000 response
samples generated by the CLHS and those estimated by the developed method
based on the 1,000,000 response samples generated by the MC simulation method,
however, the deviations are acceptable in the sense that for the same threshold b the
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first passage probabilities are of the same order of magnitude. Also, both the MC
simulation method and CLHS cannot exactly estimate the small passage proba-
bilities as low as 10−7–10−5.

6.3 Mechanical Model of Two Connected Electric
Substation Equipment Items

Consider the mechanical model of two electric substation equipment items con-
nected by a rigid bus conductor fitted with a flexible strap connector, which is
subjected to earthquake base motion. The detailed description of the mechanical
models of the equipment items has been given by Song and Der Kiureghian (2006).
The equation of motion of the system is

MX ̈+CX ̇+R X,X ̇,Uð Þ= −Lx ̈g ð37Þ

where

X=
X1 tð Þ
X2 tð Þ

� �
ð38Þ

M =
m1 0
0 m2

	 

ð39Þ

C=
c1 + c0 − c0
− c0 c2 + c0

	 

ð40Þ

R X,X ̇, Zð Þ= k1X1ðtÞ− fs ΔXðtÞ,ΔX ̇ðtÞ,UðtÞ� �
k2X2ðtÞ− fs ΔXðtÞ,ΔX ̇ðtÞ,UðtÞ� �� �

ð41Þ

L=
l1
l2

� �
ð42Þ

where xg̈ is the base acceleration, Xi tð Þ is the displacement of the ith equipment item
at its attachment point relative to the base, ΔXðtÞ=X2ðtÞ−X1ðtÞ is the relative
displacement between the two equipment items, and the function fs ΔX,ΔX ̇,U

� �
denotes the resisting force of the rigid bus conductor fitted with a flexible strap
connector, which is described by the generalized Bouc-Wen hysteretic law, i.e.,

fs ΔX,ΔX ̇,U
� �

= αk0ΔX + 1− αð Þk0U ð43Þ

U ̇=ΔX ̇ A− Uj jnψ ΔX,ΔX ̇,U
� �� � ð44Þ

Estimate of Small First Passage Probabilities … 157



ψðΔX,ΔX ̇,UÞ= β1sgn(ΔX ̇UÞ+ β2sgn(ΔX ̇ΔXÞ+ β3sgn(ΔXUÞ+ β4sgn(ΔX ̇Þ
+ β5sgn(UÞ+ β6sgn(ΔXÞ

ð45Þ

The parameters related to the system are m1 = 1090 kg, m2 = 545 kg, k0 = 49.2
kN/m, k1 = 172 kN/m, k2 = 538 kN/m, l1 =m1, l2 =m2, c0 = 0,
ζi = ci ̸ 2

ffiffiffiffiffiffiffiffi
miki

p� �
=0.02, i=1, 2, α=0.1, A=1.0, n=1, β1 = 0.470, β2 = − 0.118,

β3 = 0.0294, β4 = 0.115, β5 = − 0.121 and β6 = − 0.112, respectively. In this exam-
ple, we assume that the ground acceleration xg̈ tð Þ is a zero-mean, stationary Gaussian,
filtered white-noise process having the Kanai-Tajimi PSD

S ωð Þ= S0
ω4
f +4ω2

f ζ
2
f ω

2

ω2 −ω2
f

� �2
+ 4ω2

f ζ
2
f ω

2
ð46Þ

with S0 = 0.0156 m2/s3, ωf =15.7 rad/s and ζf =0.6. The random process xg̈ tð Þ is
represented by the spectral representation, i.e., Equation (22), with equal intervals
Δω=0.3 rad/s and a cut-off frequency of ωU =120 (rad/s), which covers about 95%
of the area underneath the PSD. Therefore, the period of the simulated process is
about 21 s and is described by 800 Gaussian random variables.

By using the MC simulation method and CLHS method, we generate, respec-
tively, 20000 and 2000 response samples of the system. Based on the 20,000 and
2000 samples, we use the developed method to estimate the small probabilities of
first-passage failure related to X1 tð Þj j and X2 tð Þj j and plot them in Figs. 3 and 4,
respectively. Note that, in the estimation of the parameters of the SGLDs, the
exceedance probabilities P1 and P2 are set to P1 = 10− 1 and P2 = 10− 2 for
A1 = max0≤ t≤ 20 X1 tð Þj j and P1 = 10− 1 and P2 = 0.5 * 10− 2 for A2 = max0≤ t≤ 20
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X2 tð Þj j, respectively. As compared, the first passage probabilities directly estimated
from the 20,000 and 2000 samples are also plotted in Figs. 3 and 4. Similar to the
above example, Figs. 3 and 4 show that the developed method based on the 2000
response samples generated from the CLHS provide the sufficiently accurate esti-
mates of the small first passage probabilities as low as 10− 7, which cannot be
directly obtained from the 20,000 samples generated by the MC simulation method
and the 2000 samples generated by CLHS.

From the numerical results plotted in Figs. 5 and 6 and the correlation coefficient
between the extreme values A1 and A2 estimated from the 20,000 and 2000 samples,
we use the developed method to estimate the first passage probabilities of the vector
thresholds b1, b2ð Þ of the vector response process X1 tð Þj j, X2 tð Þj jð Þ. Figure 5 plots
the estimated results based on the 20,000 samples generated by the MC simulation
method, in which the thresholds are set to be 8 cm≤ b1 ≤ 20 cm and
1.6 cm≤ b1 ≤ 3 cm, respectively. The ratio of the estimated results based the 2000
samples generated by the CLHS to those shown in Fig. 6, i.e., rCLHS−MC = pCLHSf

b, 20ð Þ p̸MC
f b, 20ð Þ, are also computed and plotted in Fig. 8. It can be seen in Fig. 8

that the ratio rCLHS−MC is larger than 0.75 and less than 1, which indicates that the
estimated results based the 2000 samples are always slightly less than those based
on the 20,000 samples. Figures 5 and 6 also show that in the case that the ratio
rCLHS−MC is less than 0.9 the first passage probabilities based on the 20,000
samples are less than 10− 4. For such small probabilities, the ratio rCLHS−MC ∈
0.75, 0.9½ � is acceptable, i.e., the small first passage probabilities estimated based on
the 2000 samples generated by the CLHS are sufficiently accurate, as compared
with the results estimated based on the 20,000 samples generated by the MC
simulation method.

Finally, we consider the conditional first passage probabilities
P X1 τð Þj j> b1, τ ∈ 0, T½ � X2 sð Þj j≤ b2 = 1.8 cmj , s ∈ 0, T½ �f g and P X2 τð Þj j> b2,f
τ ∈ 0, T½ � X1 sð Þj j≤ b1 = 10 cm, s ∈ 0, T½ �j g. The conditional probabilities are esti-
mated from the 20,000 response samples generated by the MC simulation method,
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the 2000 response samples generated by the CLHS, the developed method based on
the 20,000 samples and the developed method based on the 2000 samples. The
computation results are plotted in Figs. 7 and 8, respectively. Figures 7 and 8 show
that the estimates obtained from the developed method based on the 2000 samples
agree well with those obtained from the developed method based on the 20,000
samples, including those probabilities as low as 10−7–10−5, while the MC simu-
lation method and the CLHS method cannot give reasonable estimates for the such
small conditional first passage probabilities.
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6.4 Network Seismic Reliability of a Lifeline Engineering

This example is to illustrate the efficiency and use of the developed method by the
seismic reliability analysis of an electrical substation under a stochastic earthquake
excitation. The electrical substation is taken from Song (2004) and consists of five
equipment items. The equipment items 1 and 2 and equipment items 3 and 4 are
connected to each other by three identical assembles of a rigid bus (RB) and an
S-shaped flexible strap connector (S-FSC). Other connections are assumed to be
sufficiently flexible so as not to cause dynamic interaction. The network graph of
the electrical substation is shown in Fig. 9.

For the seismic response analysis, the equipment items are modeled as linear
single-degree-of-freedom (SDOF) oscillators and the RB-S-FSCs are modeled as
hysteresis elements with additional viscous damping elements. For details of the
idealization and its accuracy in interaction studies, see Song (2004).

The equation of motion of the connected equipment items 1 and 2 is defined by
Eq. (37), however, the resisting force of the rigid bus conductor fitted with a
flexible strap connector (RB-S-FSC) is described by the Bouc-Wen hysteretic law:

fs ΔX,ΔX ̇,U
� �

= αk0ΔX + 1− αð Þk0U ð47Þ

U ̇=ΔX ̇ A− Uj jn β+ γsgn ΔX ̇U
� �� �� � ð48Þ

where α represents the post- to preyield stiffness ratio, k0 is the stiffness of the
connector, and A, n, β and γ are the hysteresis model parameters.

The equation of motion for equipment items 3 and 4 is obtained by replacing
indices 1 and 2 of Eqs. (37)–(42) with 3 and 4, respectively. Equipment item 5,
which has no significant dynamic interaction with other equipment items, is
modeled as a stand-alone SDOF oscillator having the equation of motion:

m5X ̈5 + c5X ̇5 + k5X5 = − l5xg̈ ð49Þ

where m5, c5, k5 and l5 are effective mass, damping, stiffness and external internal
inertia force values of the equipment item 5.

1
RB-S-FSC

2

3
RB-S-FSC

4

5

Fig. 9 Network graph of the
electrical substation
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The parameters of the system are m1 = 438 kg, m2 = 210 kg, m3 = 403 kg,
m4 = 193 kg, m5 = 200 kg, k0 = 25.7 kN/m, k1 = 158 kN/m, k2 = 198 kN/m, k3 = 158
kN/m, k4 = 198 kN/m, k5 = 198 kN/m, li =mi, i=1, . . . , 5, c0 = 0,
ζi = ci ̸ 2

ffiffiffiffiffiffiffiffi
miki

p� �
=0.02, i=1, . . . , 5, α=0.206, A=1.0, n=1, β=0.175,

γ =0.176, respectively. In this example, we assume that the ground acceleration
xg̈ tð Þ is a zero-mean, stationary Gaussian, filtered white-noise process having the
well-known Kanai-Tajimi PSD, which is defined by Eq. (46).

The random process x ̈g tð Þ is represented by the spectral representation with equal
intervals Δω=0.3 rad/s and a cut-off frequency of ωU =120 (rad/s), which covers
about 95% of the area underneath the PSD. Therefore, the period of the simulated
process is about 21 s and is described by 800 Gaussian random variable.

From the recursive decomposition algorithm (RDA) (Li and He 2002), the
network has 5 disjoint shortest paths and 6 disjoint shortest cuts:

L1 = 12f g ð50Þ

L2 = 1 ̄34f g ð51Þ

L3 = 12 ̄34f g ð52Þ

L4 = 1 ̄234 ̄5f g ð53Þ

L5 = 12 ̄3 ̄45f g ð54Þ

and

S1 = 1 ̄3 ̄f g ð55Þ

S2 = 12 ̄34 ̄f g ð56Þ

S3 = 1 ̄34 ̄5 ̄f g ð57Þ

S4 = 1 ̄2 ̄34 ̄5f g ð58Þ

S5 = 12 ̄3 ̄4 ̄f g ð59Þ

S6 = 12 ̄3 ̄45 ̄f g ð60Þ

In this example, the failures of the components are defined as the events that the
passage times of the absolute values of the components responses first exceed in
magnitude the duration of the earthquake excitation D=20 s. For estimating the 2
threshold levels a1 and a2, 2000 response samples of the equipment items are
generated by the CLHS. As compared, 20000 response samples are also generated
by the Monte Carlo method. Note that each deterministic response in the sampling
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is solved by the four-order Rung-Kutta method with the equal time step Δt=0.02 s.
Skewness of the extreme values of the absolute values of the responses of the
equipment items are estimated from the 2000 response samples generated by the
CLHS. Estimated skewness are all more than zero. The obtained model parameters
are listed in Table 2. Note that the location parameters b listed in Table 2 are
slightly more or less than zero such that the tails of the obtained SGLDs agree well
with the actual tail distributions of the extreme value responses.

The exceedance probabilities of the extreme value responses of the high
thresholds are calculated from the obtained SGLDs. As compared, the exceedance
probabilities are also estimated from the 20,000 response samples generated by the
MC method. The numerical results show that the exceedance probabilities esti-
mated by the 2-level method are very reasonable for the thresholds considered,
however, those estimated by the MC method are unreasonable for the large
thresholds since the scale size of the response samples is not large enough.

From the dependence modeling described above, one needs to estimate the
correlation coefficients and Kendall’s tau of the extreme values of the responses
from the generated samples used for marginal distribution modeling, whereby the
elements ρ′ij of R of the normal copula, parameter α of the Clayton Copula and
parameter β of the Gumbel Copula can be estimated. The sample versions of the
correlation coefficients are

ρ=

1.000 0.471 0.498 0.323 0.042
0.471 1.000 0.239 0.405 0.252
0.498 0.239 1.000 0.485 0.050
0.323 0.405 0.485 1.000 0.120
0.042 0.252 0.050 0.120 1.000

2
66664

3
77775 ð61Þ

from which the parameters of the normal Copulas can be computed:

ρ′ =

1.000 0.473 0.496 0.324 0.043
0.473 1.000 0.241 0.408 0.257
0.496 0.241 1.000 0.484 0.051
0.324 0.408 0.484 1.000 0.122
0.043 0.257 0.051 0.122 1.000

2
66664

3
77775 ð62Þ

Table 2 Model parameters
of the SGLDs fitting the
extreme value responses

Equipment items b [cm] θ σ r
1 0.514 3.443 0.210 2.201
2 0.435 0.877 0.198 1.859
3 −0.027 3.654 0.177 2.098
4 0.287 0.907 0.178 1.974
5 0.082 1.201 0.153 1.967
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Based on marginal distribution and dependence modeling, the copulas of the five
extreme values of the seismic responses of the electrical substation can be com-
pletely determined. It is first assume that the thresholds are b1 = 5.0 cm, b2 = 1.5
cm, b3 = 5.0 cm, b4 = 1.5 cm and b5 = 1.5 cm, respectively. The probabilities of the
disjoint shortest paths and cuts as well as the seismic reliability of the electrical
substation are calculated from the obtained normal Copulas and listed in Tables 3
and 4. As compared, the probabilities and reliabilities are also estimated by the
Monte Carlo method with 20,000 samples and listed in Tables 3 and 4. It can be
seen in Tables 3 and 4 that the estimated node-pair reliabilities based on the disjoint
shortest paths and cuts are in complete agreement.

For large-size lifeline networks, one can use the Boferroni inequality to reduce
the computational cost in estimating the seismic reliability (Li and He 2002). The
approximate estimate of the seismic reliabilities can be expressed as

Rsys ≈
1
2

1+ ∑
N ′

i=1
pr Lið Þ− ∑

M′

i=1
pr Sið Þ

" #
ð63Þ

where N ′ and M′ are, respectively, the needed numbers of the disjoint shortest paths
and cuts, which can be automatically determined by the RDA method when the
maximum permissible error of the estimate has been prespecified. The relationship
between the maximum permissible error, ε, and the numbers N ′ andM′ is expressed
by

Table 3 The probabilities of
the disjoint shortest paths and
node-pair reliabilities of the
system

Disjoint shortest path Normal Copula MC method

L1 0.779049 0.776850
L2 0.075461 0.072200
L3 0.106310 0.113150
L4 0.002593 0.001800
L5 0.001928 0.002000
Rsys 0.965341 0.966000

Table 4 The probabilities of
the disjoint shortest cuts and
node-pair reliabilities of the
system

Disjoint shortest cut Normal Copula MC method

S1 0.013563 0.011750
S2 0.012591 0.014200
S3 0.001807 0.001500
S4 0.004433 0.004550
S5 0.001631 0.001450
S6 0.000635 0.000550
Rsys 0.965341 0.966000
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ε= 1− ∑
N ′

i=1
pr Lið Þ− ∑

M′

i=1
pr Sið Þ


 ð64Þ

If we set the maximum permissible error to be ε=1× 10− 2, then it only needs
four disjoint shortest paths and two or three disjoint shortest cuts to approximately
estimate the seismic reliabilities, as illustrated in Table 5.

Secondly, in order to investigate the efficiency of the proposed method in esti-
mating the small probabilities of failure of the electrical substation, we consider the
five threshold cases which are listed in Table 6. The seismic reliabilities of the
network are estimated, respectively, based on the obtained normal Copula and the
Monte Carlo method with 20,000 samples. The numerical results are plotted in

Table 5 Approximate estimation of the node-pair reliabilities of the system

Copulas N′ M′

1− ∑
N′

i=1
pr Lið Þ− ∑

M′

i=1
pr Sið Þ


 ½×10− 2�

Rsys

Normal 4 2 1.00 0.968630

Table 6 Five threshold cases
of the system

Cases b1
[cm]

b2
[cm]

b3
[cm]

b4
[cm]

b5
[cm]

1 5.1 1.6 5.1 1.6 1.6
2 5.3 1.8 5.3 1.8 1.8
3 5.5 2.0 5.5 2.0 2.0
4 5.7 2.2 5.7 2.2 2.2
5 5.9 2.4 5.9 2.4 2.4

1 2 3 4 5
1E-4

1E-3

0.01

 Normal Copula
 Monte Carlo method

1-
R

sy
s

No. of the threshold Case

Fig. 10 Node-pair
reliabilities for the considered
threshold cases
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Fig. 10. It can be seen in Fig. 10 that the seismic reliabilities estimated from the
normal Copula closely agree with those estimated from the MC method.

7 Conclusions

To efficiently estimate the small probabilities of failure i.e., small first passage
probabilities, of nonlinear random vibration systems, a new method is proposed in
the present study. The method first uses the SGLDs to approximate the upper tails
of the distributions of the extreme response of the system, thereby the small first
passage probabilities of the scalar response processes can be approximately esti-
mated. In order to reduce the computational cost to an acceptable level, an efficient
parameter estimation method is proposed to estimate the parameters of the SGLDs.
Secondly, to efficiently estimate the small first passage probabilities of the vector
response processes, the normal Copulas are used to approximate the upper tails of
the distributions of the multivariate extreme responses of the system, in which the
Copula parameters can be easily estimated based on the response samples that are
used to estimate the parameters of the SGLDs modeling the upper tails of the
extreme response distributions. Thus, the estimate of the small first passage prob-
abilities of the vector response processes requires little extra computational cost.
Two illustrative examples are presented in the present study, which show that the
efficiency of the proposed method is high enough in estimating the small proba-
bilities of failure of nonlinear random vibration systems.
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Generation of Non-synchronous
Earthquake Signals

Davide Lavorato, Ivo Vanzi, Camillo Nuti and Giorgio Monti

Abstract In this chapter, we describe two procedures to generate earthquake
asynchronous signals at different space points for the same seismic event. The
foundations of long structures, such as bridges, are placed at distant space points.
The earthquake signals at these points have different characteristics and their correct
evaluation is important to define design actions. However, design codes around the
world do not consider this complex type of action in a consistent manner. The
point-to-point signal variation is due both to time lag, since the seismic waves move
through the soils with a finite velocity among distant points, and to a change of the
signal frequency contents. This depends on physical complex soil-wave interaction
phenomena during wave propagation (reflection, refraction, filtering, amplification,
etc.). In this chapter, two different generation procedures (PR1 and PR2) to
determine the non-synchronous actions at different surface points are shown. Both
procedures have been implemented in MATLAB. PR1 generates asynchronous
signals at the soil surface. It starts from recorded signals at a few surface points for
the same seismic event. PR2 produces asynchronous surface signals by amplifying
the bedrock signals obtained by a bedrock propagation process. The inputs for the
bedrock propagation are obtained via deconvolution of the recorded surface signals.
These latter are also the inputs of the PR1 procedure. Detailed knowledge of soil
characteristics is required (soil layers, shear wave velocity profiles, soil density,
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nonlinear materials shear moduli and damping curves), which relies on in situ tests.
Deconvolution and amplification processes are performed by Equivalent-Linear
Earthquake Site Response (1D soil model, SHAKE91 (Schnabel et al. 1972) and
EERA (Bardet et al. 2000)). PR1 and PR2 are then applied to an example case.
Asynchronous surface signals are generated at eight foundation points of a bridge
placed in the Aterno Valley near the city of L’Aquila in Italy, where recordings are
available at different recording stations (AQA and AQV) for the same earthquake.
The EW component of the strong main shock of 4-6-2009 in L’Aquila is selected as
input for the two procedures. Finally, the comparison between the signals resulting
by PR1 and PR2 and the input signals recorded at the same points is discussed in
term of effects on the structures (acceleration response spectrum) and characteristics
of the generated signals (Fourier amplitude spectra, coherences for each frequency)
to evaluate the differences between the two procedures and between the procedures
and the actually recorded signals.

1 Introduction

Seismic signals (accelerograms) recorded at different surface soil points for the
same seismic event are different. This difference is due to a time translation of the
signals (time lag) from point to point (the wave moves through two different soil
points during a time window) and to a variation of the signal frequency content for
effect of soil-wave interaction phenomena (i.e., reflection and refraction of the
waves, geometric incoherency, filtering, local amplification or attenuation). These
signal variations can be large in case of distant points so that different asynchronous
seismic accelerations should be applied at different foundation points of long
structures. However, asynchronous seismic action is not evaluated properly in
international structural seismic design codes yet. Designers of long structures
usually consider either synchronous actions or, in some cases, the effects of
non-synchronism due to the time lag difference. This design practice in case of long
structures usually can lead to an unsafe design (Monti et al. 1994, 1996; Shinozuka
et al. 2000; Tzanetos et al. 2000; Sextos et al. 2003; Nuti and Vanzi 2004, 2005;
Lupoi et al. 2005; Carnevale et al. 2010, 2012a, b).

The asynchronous signal transformation from point to point due to the time
translation, to the coherency variation and to the different local site effects can be
evaluated by means of different models evaluating separately each contribution
(Luco and Wong 1986; Vanmarcke and Fenton 1991; Abrahamson et al. 1991;
Oliveira et al. 1991; Vanmarcke et al. 1993; Monti et al. 1996; Tzanetos et al. 2000;
Shinozuka et al. 2000; Santa-Cruz et al. 2000; Nuti and Vanzi 2004, 2005; Lupoi
et al. 2005; Zerva and Zervas 2002; Zerva 2009; Lavorato et al. 2017).

In this chapter, the generation of surface seismic asynchronous signals (ac-
celerograms) by means of two numerical procedures is presented to give designers
proper tools and useful indications to obtain meaningful seismic earthquake signals.
The proposed procedures provide an innovative contribution to describe
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asynchronous surface signals at different points starting from a few available natural
accelerometric recordings considering different knowledge levels about the soil.

Firstly, a numerical asynchronous signals propagation procedure is described
(Nuti and Vanzi 2004, 2005), which has been implemented by a function frame-
work in MATLAB (Generation of Asynchronous Signals GAS 2.0). These func-
tions have as input the earthquake signals at some points and the soil characteristics
for each type of soil crossed by the seismic wave and produce as output the
asynchronous signals at points of a random field defined by the user. The propa-
gation procedure considers the point-to-point signals variation due to the fre-
quencies content transformation and to the time lag difference. The signal
frequencies content at each point is calculated by assuming a normal distribution of
the signal amplitudes. The mean and variance of this normal distribution are
obtained from point to point considering the amplitudes of the signals generated at
previous point, which were already crossed by the wave by means of the joint
conditioned probability theory elaborating the covariance matrix of the propagation
problem (Vanmarcke and Fenton 1991). This covariance matrix (Σ) is built starting
from the frequency content of the input signals (power spectra density function
PSD) and by the coherence function (ρ) that describes how the signals frequency
content changes from point to point as function of the crossed distance and of the
crossed soils characteristics.

Next, two different generation procedures (PRocedure 1 (PR1), PRocedure 2
(PR2)) are discussed and applied to a case study to generate surface seismic

PR
1 

PR
2 

Fig. 1 Generation procedures of asynchronous earthquake signals at surface in correspondence of
eight bridge pier foundations: PRocedure 1 (PR1) surface propagation starting from recording
accelerograms at AQA and AQV stations propagation (horizontal dashed line arrow); PRocedure
2 (PR2) bedrock propagation (horizontal dashed line arrow) starting from signals obtained from
deconvolution of the surface signals recorded at AQA and AQV (vertical dashed line arrow) and
next amplification (vertical arrows) of the bedrock signals by SHAKE91 (Schnabel et al. 1972) to
obtain the surface signals at each bridge foundation [m]
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asynchronous signals (accelerograms) at the foundations of a bridge with eight piers
(Fig. 1) located in the Aterno valley near L’Aquila, Italy. Different recording sta-
tions are placed in this Valley and so different recordings are available for the same
seismic event. Each recording station has an identification code in ITACA database
(for example AQA and AQV are two station codes).

The bridge foundations were placed on two soil units (U-AQA and U-AQV,
Fig. 1). The soil Unit U-AQA has the soil profile and properties defined under the
station AQA (Fig. 2) whereas the soil Unit U-AQV has the soil profile and prop-
erties defined under the station AQV (Fig. 2). The components EW recorded at the
AQA and AQV stations (Fig. 1) during the main shock (4-6-2009) at L’Aquila
were considered as inputs for the two generation procedures. The coherence model
(ρ) (Vanmarcke and Fenton 1993) was calibrated by the input signals.

Fig. 2 Soil units U-AQA and U-AQV below AQA and AQV recording stations (Fig. 1)
respectively: first row shear modulus (a.1) and damping curves (a.2) proposed for gravel in Rollins
et al. (1998). In particular, gravel behavior was well defined by Rollins et al. (1998) mean plus one
standard deviation curve for shear modulus and Rollins et al. (1998) mean minus one standard
deviation curve for damping; second row (b, c) layers geometries, material types and shear wave
(Vs) profiles (reproduced from Lanzo and Pagliaroli 2012)
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The procedure PR1 generates accelerometric signals directly at the surface,
starting from input surface signals and soil characteristics defined in Eurocode 8
(Eurocode 8, ENV 1998-1-1). This solution is simpler as it is direct and it is not
necessary to perform local site effect analysis, but it could result less accurate.

The procedure PR2 generates signals at bedrock starting from input signals at
bedrock. These input signals are obtained by the deconvolution of the available
surface input signals. Finally, the generated bedrock signals are amplified by
explicitly considering the local site effects through an equivalent 1D linear analysis.
This procedure is more accurate about the soil local effects as it uses a higher
knowledge level about the soil (soil layer geometry, nonlinear damping and shear
stiffness properties, specific weight, etc.). Furthermore, this procedure allows using
the available recorded surface signals at a few points, where the soil characteristics
are well-known, to obtain surface signals at points where the recorded signals are
not available but where the soil characteristics can be evaluated by in situ tests.

Finally, the comparisons among the signals generated by PR1 and PR2 at AQA
and AQV and the input signals recorded at the same points allows evaluating the
significance of the generated signals. In particular, 50 signals obtained by the two
procedures were compared in terms of Fourier amplitude spectra, coherence
between couples of distant points along the bridge and acceleration response
spectra.

2 Random Field Propagation Model and Definition
of Earthquakes that Vary in Space

The seismic waves signals (accelerograms) recorded at the same time at different
points in space for the same seismic event are different. This difference is due to:

• Non-synchronism effects type 1 (NS1): the transformations of the seismic wave
frequencies content due to the wave-soil interaction phenomena (reflection,
refraction, amplification, etc.).

• Non-synchronism effects type 2 (NS2): the wave reaches a different point after a
given time and so there is a time lag (time translation of the signals) among the
signals from point to point.

In the last years, several random field (RF) models able to define the spatial
variability of earthquakes were presented. These models were developed on the
basis of experimental data for simultaneous recordings of the same earthquake
(Abrahamson et al. 1991; Oliveira et al. 1991) or on different statistical models
(Luco and Wong 1986; Vanmarcke and Fenton 1991, 1993; Monti et al. 1996;
Tzanetos et al. 2000; Shinozuka et al. 2000; Santa-Cruz et al. 2000; Nuti and Vanzi
2004, 2005; Lupoi et al. 2005; Zerva and Zervas 2002; Zerva 2009; Lavorato et al.
2017). The models share all a common physical framing, as described by Luco and
Wong (1986). However, the evolution presented in Nuti and Vanzi (2004, 2005), is
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easier to handle from a mathematical and engineering points of view. It generates
asynchronous signals at different space points for a given seismic event starting
from acceleration spectra, and has also been upgraded so as to use a real recording
as the input.

2.1 Spatial Model of the Earthquakes

The non-synchronism effects can be evaluated assuming that an earthquake
acceleration signal at point P in space can be represented via its Fourier expansion
as a sum of cosines and sines (Nuti and Vanzi 2004; Nuti and Vanzi 2005):

AP tð Þ= ∑
k
ðBPk cosðωktÞ+CPk sinðωktÞÞ ð1Þ

In Eq. (1), AP(t) is the measured acceleration in point P at time t, k is an index
varying from 1 to the number of circular frequencies ωk considered, BPk and CPk are
the amplitudes of the k-th cosine and sine functions.

Assume the acceleration AP(t) is produced by a wave moving with velocity V
towards a different point in space, say Q, at distance XPQ from P, within a medium
(soil) which transmits them without distortion. At point Q, and at time t, we have:

AQ tð Þ= ∑
k
ðBPk cosðωk t− τPQð ÞÞ+CPk sinðωkðt− τPQÞÞ ð2aÞ

where

τPQ =XPQ cosðψÞ V̸app ð2bÞ

In Eq. (2b) ψ is the angle between the vector of surface wave propagation and
the vector that goes from P to Q, τPQ is the time delay of the signal and Vapp is the
surface wave velocity (apparent velocity, Nuti and Vanzi 2004).

Actual recordings at different points in space indicate that Eq. (2a) is “nearly”
correct. Since the medium through which the waves travel does distort them, the
recording in Q resembles the one in P, the more the shorter the distance between
them, and is written as

AQ tð Þ= ∑
k
ðBQk cosðωkðt− τPQÞÞ+CQk sinðωkðt− τPQÞÞ ð3Þ

BPk is correlated with BQk and CPk is correlated with CQk but the B’s and C’s are
independent. The latter is often referred to with the sentence “phase angles are
random”. The statistical properties of the amplitudes can then be summed up as in
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Eq. (4) which is saying that the amplitudes BPk and CQk are statistically indepen-
dent, for any points P and Q, and any circular frequency ωk, with the only exception
of BPk and BQk i.e. same circular frequency but different points in space. The same
holds for CPk and CQk.

BPk1 independent on CQk2 ∀P, Q, k1, k2
BPk1 independent on BQk2 ∀P, Q, k1, k2≠ k1
CPk1 independent on CQk2 ∀P, Q, k1, k2≠ k1
BPk correlated with BQk ∀P, Q, k
CPk correlated with CQk ∀P, Q, k

ð4Þ

The amplitudes, which are themselves random variables, are usually assumed
normally distributed with zero mean and this assumption is experimentally verified
(Vanmarcke and Fenton 1991).

In order to quantify the acceleration time histories in different points in space,
Eqs. (1) and (3), all that is needed is a definition of the correlation between
amplitudes and of their dispersion, as measured by the variance or, equivalently, of
the covariance matrix of the amplitudes.

The covariance matrix (Σ) is assembled via independent definition at each fre-
quency of its diagonal terms, the variances at each space point and correlation
coefficient between the amplitudes (ρ). The number of generation points n defines
the dimension n × n of the matrix Σ. The diagonal terms of Σ are expressed by the
power spectral density function (PSD) assumed at each i-th RF generation point.
The off diagonal terms of Σ are defined by a correlation coefficient (ρ) which
defines the similitude in term of amplitudes for each frequency between two signals
generated at two different points and by the PSD functions assumed at these points.

In case of propagation between two points P and Q, the diagonal terms of
covariance matrix (Σ) are quantified via power spectral density functions PSDPP

and PSDQQ at P and Q only. The off diagonal terms (PSDPQ, PSDQP) are obtained
by a coherence coefficient (ρ = ρωk(X)) and PSD functions (PSDPP and PSDQQ) at
the two points P and Q, crossed by the signal during the propagation. The corre-
lation coefficient (ρ) can be expressed via coherency functions.

There are different coherency functions in literature able to describe the coher-
ence variation from point to point for each signal frequency (Harichandran and
Vanmarcke 1986; Luco and Wong 1986; Der Kiureghian 1996; Vanmarcke and
Fenton 1993; Zerva and Zervas 2002; Zerva 2009). The choice of the appropriate
coherence function has be done to overcome also possible numerical errors when
the generation procedure is implemented in a computer code. In fact, well-known
numerical errors can arise during the elaboration of the problem matrix especially in
case of numerical matrix inversion operation. These errors can produce unreliable
results due to false numerical matrix singularity.

In this chapter, the selected isotropic frequency-dependent spatial correlation
function is described by the following equation (Vanmarcke and Fenton 1993):
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ρωk
Xð Þ= eð−ωk Xj j ð̸2 πVssÞÞ ð5aÞ

The coherence model between two signals for each circular frequency (ωk) is a
function of the distance (X) between the two points where the signals are generated,
the wave shear velocity (Vs) and the coherence parameter s. The coherence
parameter s can be calibrated on the basis of two known input earthquake signals.

For the case of study presented in Sect. 2.3, the selected coherence model has
overcome possible numerical errors when the covariance matrix (Σ) is numerically
inverted.

It is important to underline that the generation of a reliable RF of asynchronous
accelerometric signals requires the knowledge of a sufficient number of input sig-
nals to calculate the PSD functions as function of the complexity of the RF points
system. In fact, the generation points of a RF can be placed on a complex site
system composed by different soil units (different materials, soil layer geometries,
etc.). The effect of soil-wave interaction phenomena can be different for each soil
unit and so it is important to consider the specific soil unit effects by a proper input
PSD function for each soil unit.

Furthermore, some parameters of the coherence model (ρ) have to be calibrated
for the specific generation problem. This calibration can be done by evaluating the
experimental coherence (ρe = ρe(fk)) for each frequency (fk) between the input
signals known at two points and then by tuning the coherence model parameters to
obtain numerical coherences similar to the experimental ones in a range of fre-
quencies of interest for the structures analyzed (i.e., for civil structures [0.25,
5 Hz]).

A coherence function parameter tuning can be done, with acceptable approxi-
mation from an engineering point of view, by rewriting the Eq. (5a) to have the
parameter s as function of the experimental coherence (Eq. 5b):

sk ρeð Þ= − fk Xj j ð̸lnðρeÞVsÞ ð5bÞ

where fk = ωk/(2π). Then the mean value sm of the sk values obtained by Eq. (5b)
for each circular frequency ωk is calculated in the above-defined range of
frequencies.

Next, the numerical model for the coherence (ρ = ρωk(X)), which is calibrated
by Vs and s = sm parameters, can be used to determine coherence between the
signals at different generation points given the point distance X by the Eq. (5a).

After the construction of the covariance matrix, one can focus on the generation
procedure for a single cosine component from Eqs. (1) and (3), since the amplitudes
at different circular frequencies are independent of each other, and the same holds
for the sine and cosine terms. One such cosine component, at points P1, P2, …, Pi is:
AP1(t) = BP1cos(ωt); AP2(t) = BP2cos(ω(t − τP1P2))… APi(t) = BPicos(ω(t − τP1Pi))
where, for simplicity, the subscript k has been dropped. The amplitudes B at i
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different points are still collectively normally distributed with mean values equal to
zero and covariance matrix Σ:

B∼N 0,Σð Þ

pdfB bð Þ=2π − 1 2̸detðΣÞ− 1 2̸e−
1
2b

TΣ− 1b ð6Þ

and can be sampled by recalling that, for collectively normally random variables,
conditional distribution are normal.

The formal statement of this rule is:

x1
x2

� �
∼N

u1
u2

� �
,

Σ11 Σ12

Σ21 Σ22

� �� �
ð7Þ

where x1 ε Rm, x2 ε Rn and the dimensions of the mean vectors and covariance
matrix sub blocks are chosen to match x1 and x2.

Then the conditioned densities:

pðx2jx1Þ=pðx1, x2;μ,ΣÞ ̸
Z
x2∈Rn

p x1, x2;μ,Σð Þdx2 ð8Þ

are also Gaussian:

x2jx1∼Nðμ2+Σ21Σ− 1
11 ðx1−μ1Þ, Σ22 −Σ21Σ− 1

11 Σ12Þ ð9Þ

Amplitudes sampling, which allows to reconstruct the whole earthquake accel-
erations random field, can then be done as reported by Vanmarcke and Fenton
(1991).

The sampling scheme for B for each circular frequency ωk is:

• sample the value b1 of the random variable B1 at the first considered generation
point P1 from a normal distribution with zero mean and variance equal to Σ11;

N∼ 0,Σ11ð Þ

• at l-th point, sample the value bl of the random variable Bl/b1, b2,…, bl−1 from a
normal distribution with mean equal to μ2 + Σ21Σ11

−1(x1 − μ1) and variance
equal to Σ22-Σ21Σ11

−1 Σ12 (Eqs. 7–9) with:

B=

B1

B2

. . .
Bl− 1

Bl

. . .
Bn

0
BBBBBBBB@

1
CCCCCCCCA

x1 =

B1

B2

. . .
Bl− 1

0
BB@

1
CCA x2 =

Bl

. . .
Bn

0
@

1
A
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Σ11 =

S11 ρ12
ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22

p
. . . ρ1ðl− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11Sðl− 1Þðl− 1Þ

p
ρ21

ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22

p
S22 . . . . . .

. . . . . . . . . . . .

ρðl− 1Þ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11Sðl− 1Þðl− 1Þ

p
. . . . . . Sðl− 1Þðl− 1Þ

0
BBBB@

1
CCCCA

Σ12 =

ρ1l
ffiffiffiffiffiffiffiffiffiffiffi
S11Sll

p
. . . . . . ρ1n

ffiffiffiffiffiffiffiffiffiffiffiffi
S11Snn

p

. . . . . . . . . . . .

. . . . . . . . . . . .

ρðl− 1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðl− 1Þðl− 1ÞSll

p
. . . . . . ρðl− 1Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnnSðl− 1Þðl− 1Þ

p

0
BBBB@

1
CCCCA

Σ21 =

ρl1
ffiffiffiffiffiffiffiffiffiffiffi
S11Sll

p
. . . . . . ρlðl− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðl− 1Þðl− 1ÞSll

p
. . . . . . . . . . . .

. . . . . . . . . . . .

ρn1
ffiffiffiffiffiffiffiffiffiffiffiffi
S11Snn

p
. . . . . . ρnðl− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnnSðl− 1Þðl− 1Þ

p

0
BBBB@

1
CCCCA

Σ22 =

Sll . . . . . . ρln
ffiffiffiffiffiffiffiffiffiffiffi
SnnSll

p

. . . . . . . . . . . .

. . . . . . . . . . . .

ρnl
ffiffiffiffiffiffiffiffiffiffiffi
SnnSll

p
. . . . . . Snn

0
BBB@

1
CCCA

ð10Þ

where Sij(ωk) = PSDij(ωk) dω, dω is the constant circular frequencies difference
and ρij(ωk) is the coherence between the signal at point Pi and the one at point
Pj.
Assuming μ1 = μ2 = 0 for the Eq. (6).

• continue partitioning the covariance matrix Σ up to the last generation point Pn.

This process must be repeated for all the values of circular frequencies k, and for
the sine and cosine terms, and the different components summed up as in Eq. (3).
Notice that the signal components for different circular frequencies, once the
amplitudes are sampled as described above, can be computed in an efficient way by
inverse Fourier transform, possibly using FFT (Fast Fourier transform).

The scaling of the generated signals is done by guaranteeing the same Arias
coefficient for input and output (generated) signals. The Arias coefficient measures,
in a time window, the strength of a ground motion and is an effective scaling factor
for reproducing reliable generated signals. This choice has been made after several
numerical attempts using alternative strategies. The earthquake signals usually
show a variability of the acceleration during the main duration time windows. There
is a first part with low acceleration, a central part with significant acceleration and a
final part with low acceleration. In the proposed procedure, the earthquake duration
is divided in four time windows (one for the accelerogram part with initial low
accelerations, two for the main part and another one for the final part with low
acceleration) to obtain Arias scale factor specific for each time windows.
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Finally, the effects of the NS2 are included in the propagation procedure by
performing a simple temporal translation of the signals at each different space point.
The time lag (τPQ, Eq. 2b) at each point can be calculated by considering the
distances crossed by the seismic waves and by assuming an apparent wave velocity
(Vapp, Eq. 2b).

The RF propagation model is based on random extraction from normal distri-
bution, which are defined by mean and standard deviation values at each generation
point. For that reason, different random extractions for the same problem inputs
produce different generated signals at each RF point. A proper number of different
extractions at the same RF point should be performed to analyze the generation
results by a statistical point of view considering, at each RF point, mean and mean
plus or minus standard deviation curves of the signals characteristics (i.e., Fourier
amplitude spectra, coherence in function of the frequencies or acceleration response
spectra).

The proposed RF propagation model was implemented in MATLAB by a
functions framework named GAS 2.0 (Generation of Asynchronous Signals) that
generates asynchronous signals at n points starting from a given number of recorded
accelerometric signals for the same seismic event.

2.2 Case Study: Generation of Surface Asynchronous
Signals at the Foundations of a Bridge Located
in the Aterno Valley Near L’Aquila, Italy

The proposed random field (RF) propagation model was applied to generate a RF of
surface asynchronous seismic signals at different points of the Aterno valley near
L’Aquila, Italy, starting from the recordings of real accelerometric signals, available
at a few RF points.

In particular, there are two recording stations AQA and AQV in this valley,
which are distant 422 m (Fig. 1); a distance compatible with the length of foun-
dations of a long bridge. For that reason, in this case study, it is possible to consider
the generation of asynchronous signals at different foundations points of a bridge
and then to compare the generated signals with the ones recorded in correspondence
of some bridge foundations, which are given as input of the procedure at some
foundations points.

The input accelerometric recordings at stations AQA and AQV permit the cal-
ibration of the coherence model parameter (ρ) and the definition of two different
input PSD functions for the RF. In this way, it is possible to define two groups of
bridge foundations and to assign to each group one of the two PSD functions,
considering different local site effects for each foundation group.

The EW components of the accelerometric signals recorded at the two stations
AQA and AQV (Fig. 1) during L’Aquila main-shock event (4-6-2009, Magnitude
6.3) are the input signals of the case of study. These components are available in the
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Italian earthquake database ITACA (ITalian ACcelerometric Archive, INGV). The
main part of the recordings at AQA and AQV was selected considering a time
windows of 20.48 s and the recordings at the two different stations were elaborated
to have the same zero time. The same zero time was obtained eliminating the time
lag difference between the two accelerometric recording zero-times due to the
distance between the two stations and to the finite seismic wave velocity. In fact, the
seismic wave arrives first in one station (AQA) and then at the second station
(AQV).

In this application, the signals were generated in correspondence of eight pier
foundations (AQA, AQ2, AQV, AQ4, AQ5-AQ8, Fig. 1) of a bridge with longi-
tudinal axis along the line between AQA and AQV stations (Fig. 1) with an angle ψ
of about 27° with respect to the EW line; acronyms are identified in Fig. 1 The
distances crossed by the EW components to reach each generation point are
measured along the EW line during the propagation process considering this angle.
The bridge has a group of two pier foundations (AQA, AQ2) on the soil unit
U-AQA, which is characterized by the PSD of the input recording of AQA station,
and a second group of six pier foundations (AQV, AQ4, AQ5, AQ6, AQ7, AQ8) on
the soil unit U-AQV, which is characterized by the PSD of the input recordings at
AQV station (Fig. 1). These two soil units U-AQA and U-AQV have the layer
geometries, the shear wave (Vs) profiles and the soil material nonlinear properties
given in Fig. 2 by Lanzo and Pagliaroli (2012). These soils properties were selected
by Lanzo et al. (2012) by comparing the surface signals obtained by a 1D
Equivalent Linear Earthquake Site Response signals with the recorded signals at
AQA and AQV stations also in case of a strong earthquake that produces a large
nonlinear response of the soil.

In particular, the non-linear mean plus one standard deviation curve for shear
modulus (G/G0) and the mean minus one standard deviation curve for damping
(D) proposed for gravel in Rollins et al. (1998) was assumed for the two soil units
U-AQA and U-AQV below AQA and AQV. In fact, even if there are different
materials in the soil profiles of U-AQA and U-AQV the global profile nonlinear
behavior can be simulated very well by 1D equivalent analysis assuming one only
G/G0 curve and one D curve only considering the two different Vs profiles and the
two different soil unit’s depths.

It is important to underline that the selected seismic event is a near-source one
and so the 1D equivalent model for the soil amplification and deconvolution can be
improper for the correct signals definition. Furthermore, the station AQA is near the
edge of the Aterno Valley and so the 2D local effects are inevitable. For that reason,
the 1D model results should be considered with care. However, the obtained signals
resulted complete for the analysis and discussion proposed here by an engineering’s
point of view.

The two soil units have been classified as soil type B in EC8 (Eurocode 8, ENV
1998-1-1) on the basis of the mean value of the shear wave velocity Vs.
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2.3 Random Field Generation Procedure PR1 and PR2

The generation of RF of asynchronous signals at the bridge foundations is per-
formed considering two different procedures PR1 and PR2 (Fig. 1) which consider
different knowledge levels about the soil.

The procedure PR1 performs a propagation of the EW accelerometric compo-
nent of the main shock (L’Aquila earthquake, 6-4-2009) directly at surface starting
from the EW component recordings at AQA and AQV stations (Fig. 1). The input
PSDs (Power Spectral Density function) are calculated by the MATLAB built-in
function starting from the EW components recorded at AQA and AQV stations
(Fig. 3) during L’Aquila main shock. The PSD of the AQA input signals is the
input PSD function for the foundation points AQA and AQ2 whereas the PSD of
the AQV input signals is the input PSD function for the foundation points AQV,
AQ4-AQ8.

The coherence for each frequency among the generated signals from point to
point is described by the coherence model (ρ, Eq. 5a). The mean value (sm) of the s
parameter of the coherence model (ρ) is equal to 9.06 in the range of frequencies
[0.25, 5 Hz] (Fig. 3). The sm parameter was calculated starting from the s values
given by Eq. (5b) for each frequency as function of the experimental coherences
(Fig. 3). The experimental coherences (ρe) for each frequency were calculated by
the MATLAB function starting from the two input signals at AQA and AQV
stations.

The shear wave velocity Vs in the coherence function (ρ) is assumed equal to
580 m/s, the mean value of the shear velocities in the shear velocity range [360,
800 m/s] for soil type B in EC8 (Eurocode 8, ENV 1998-1-1).

The knowledge level for the soil is low, since Vs is given considering the EC8
soil categories velocities only; moreover, the local site effects are not considered
explicitly, rather, by means of the PSDs of the surface recorded input signals only.

The PR2 procedure produces asynchronous signals at surface at each bridge
foundation point (Fig. 1) by amplifying the asynchronous signals generated by a
propagation procedure (Sect. 2) at the bedrock below each foundation point. The
bedrock asynchronous signal propagation has as input the signals obtained by a
deconvolution process of the EW components recorded at AQA and AQV stations
(Fig. 1) (which are the surface inputs for procedure PR1) during the L’Aquila main
shock (4-6-2009). The deconvolution process was performed by an
Equivalent-Linear Earthquake Response Analysis, which is implemented in
SHAKE91 (Schnabel et al. 1972) or EERA (Bardet et al. 2000), considering the
local soil characteristics of U-AQA for the signal recorded at AQA and of U-AQV
for the signal recorded at AQV (Fig. 2).

The input PSDs for the bedrock propagation are calculated by the MATLAB
built-in function starting from the deconvoluted EW components below at AQA
and AQV stations (Fig. 3). The PSD of the bedrock signal below AQA is the input
PSD function for the bedrock point below AQA and AQ2, whereas the PSD of the
bedrock signal below AQV is the input PSD function for the bedrock points below

Generation of Non-synchronous Earthquake Signals 181



AQV, AQ4-AQ8. The sm parameter of the coherence model (ρ) is equal to 4.68 in
the frequency range [0.25, 5 Hz] (Fig. 3). The sm parameter was calculated starting
from the s values given by Eq. (5b) for each frequency as function of the experi-
mental coherences (Fig. 3). The experimental coherences (ρe) for each frequency
were calculated by the MATLAB function starting from the two deconvoluted
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Fig. 3 Generation procedures PR1 (first column) and PR2 (second column): PSD functions at
AQA (first row) and AQV (second row) stations (Fig. 1) and parameter s of the numerical
coherence model (red line third row) for each frequency; sm (mean value of factor s) in the range of
[0.25, 5 Hz] (black line)
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signals at bedrock below AQA and AQV stations. The shear velocity Vs for the
coherence model (ρ) was assumed equal to 1125 m/s. This Vs value is the mean
value of the two Vs measured at bedrock below the stations AQA and AQV by
in situ tests (Fig. 2, Lanzo and Pagliaroli 2012).

Finally, the generated bedrock signals below each foundation point were
amplified by means of SHAKE91 (Schnabel et al. 1972) considering the local soil
characteristics of U-AQA for the point AQA and AQ2 and of U-AQV soil units for
the point AQV, AQ4-AQ8 (Fig. 1) to obtain the surface signals at each bridge
foundation. The input Vs profiles, layer geometry, material shear modulus (G/G0)
and damping (D) nonlinear curves for the amplification below AQA and AQV
stations are given in Fig. 2.

For this procedure, the knowledge level for the soil is high, since soil profile
geometries and properties have to be defined accurately (i.e., by in situ tests) and
the local soil-wave interaction effects are considered explicitly by means of
deconvolution and amplification processes.

The propagation of signals at surface and at bedrock during procedure PR1 and
PR2, respectively, was performed by the function implemented in GAS 2.0 using
the updated proposed generation model (Sect. 2) considering the asynchronous
effects NS1 only, which changes the frequencies content of the signals evaluated at
different RF points due to the soil-wave interaction phenomena.

The time translation of the generated signals to reproduce the NS2 effects is not
applied during the generation procedure. In fact, this study focused on the signals
transformations due to NS1 only from point to point during a propagation of a
seismic wave. These signal transformations are usually not considered properly
during the structural design in case of asynchronous signals analysis and so their
effects are discussed with attention here.

2.4 Comparison of the Generated Signals by Procedure PR1
and PR2 at Surface

The asynchronous signals generated at surface by means of PR1 or PR2 procedures
were compared in terms of signals characteristics (Fast Fourier Transformation
amplitude spectra and coherence among signals at different generation points) and
structural response (acceleration response spectra) at bridge foundations AQA,
AQV, AQ5 and AQ8 (Fig. 1). These foundation points were selected for the
comparison because recordings of the real EW components of the earthquake are
available at AQA and AQV points (input of the procedure) and so it is possible to
evaluate the reliability of the generated signals.

Furthermore, the points AQ5 and AQ8 were selected for the comparison to
evaluate the coherence among points increasingly distant from each other. In par-
ticular, the coherence between the generated signals at couples of point AQA-AQV,
AQA-AQ5 and AQA-AQ8 were analyzed (Fig. 1).
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In particular, fifty asynchronous signals were obtained by means of the two
procedures (PR1 and PR2) in correspondence of the selected bridge foundations.
These signals were elaborated to obtain Fourier amplitude spectra (FFT-AMP),
coherence between couple of distant points along the bridge (Cohere) and accel-
eration response spectra (Sa). Finally, the mean and mean plus or minus one
standard deviation curves of the FFT-AMP, Cohere and Sa curves were calculated
at each selected point to perform statistical comparison between the two procedures
results.

2.4.1 Comparison Among FFT Amplitude Spectra

The Fast Fourier Transformation amplitude spectra (FFT-AMP) were calculated
using MATLAB built-in function for the generated signals at AQA, AQV, AQ5 and
AQ8 by means of PR1 and PR2 procedures. The mean curve and the mean plus or
minus one standard deviation curves of the FFT-AMP (calculated considering the
fifty FFT-AMP of the signals generated at the selected point for each procedure) are
shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7 for the surface points AQA, AQV, AQ5
and AQ8 respectively in the range of frequencies [0, 10 Hz]. This range of fre-
quencies is greater than the one of interest for civil structures [0, 5 Hz] but it allows
comparing the two procedures also for higher frequency contents. The green lines
in Figs. 4 and 5 represent the FFT-AMP of the input recorded surface signals at
AQA and AQV stations.

The comparison among the mean curves of the FFT-AMP of the two procedure
(PR1, red line; PR2, blue line, Figs. 4 and 5) with the FFT-AMP of the input
signals at AQA and AQV (green line, Figs. 4 and 5) shows that each procedure
simulates well the input surface signals frequencies content. In fact, the FFT-AMP
values of the input signals (green lines in Figs. 4 and 5) for each frequency are very
near to the values of the mean curve of the FFT-AMP obtained from each procedure
(red line for PR1, blue line for PR2 in Figs. 4 and 5). Furthermore, the value of the
FFT-AMP input signals is for many frequencies included in the FFT-AMP range
values defined by the FFT-AMP mean plus (dot black lines in Figs. 4 and 5) or
minus (dashed black lines in Figs. 4 and 5) standard deviation curves. For that
reason, these two generation procedures are able to produce reliable earthquake
signals from a statistical point of view.

2.4.2 Comparison Among Signals Coherences at Different Surface
Points

The coherences for each frequency were calculated by the MATLAB built-in
function considering the generated signals at the couples of points AQA-AQV,
AQA-AQ5 and AQA-AQ8 using procedure PR1 or PR2. This is important as the
coherence measures the variation of the signals characteristics during the
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Fig. 4 Comparison between procedure PR1 (first row) and PR2 (second row) Fourier Amplitude
spectra (FFT-AMP) at AQA surface point (Fig. 1); mean of the FFT-AMP considering fifty
generations (red line for PR1, blue line for PR2) and mean plus (dot black line) or minus (dashed
black line) one standard deviation considering fifty generations; The green lines are the FFT-AMP
amplitude spectra of the recorded signals at AQA
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Fig. 5 Comparison between procedure PR1 (first row) and PR2 (second row) Fourier Amplitude
spectra (FFT-AMP) at AQV surface point (Fig. 1); mean of the FFT-AMP considering fifty
generations (red line for PR1, blue line for PR2) and mean plus (dot black line) or minus (dashed
black line) one standard deviation considering fifty generations; The green lines are the FFT-AMP
amplitude spectra of the recorded signals at AQV
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Fig. 6 Comparison between procedure PR1 (first row) and PR2 (second row) Fourier Amplitude
spectra (FFT-AMP) at AQ5 surface point (Fig. 1); mean of the FFT-AMP considering fifty
generations (red line for PR1, blue line for PR2) and mean plus (dot black line) or minus (dashed
black line) one standard deviation considering fifty generations
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Fig. 7 Comparison between procedure PR1 (first row) and PR2 (second row) Fourier Amplitude
spectra (FFT-AMP) at AQ8 surface point (Fig. 1); mean of the FFT-AMP considering fifty
generations (red line for PR1, blue line for PR2) and mean plus (dot black line) or minus (dashed
black line) one standard deviation considering fifty generations
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propagations. This difference among the signals produces relative displacements
among the different foundation points.

The effects of these relative displacements (i.e., actions on bridge deck) are very
important in the design of long structures (Monti et al. 1994, 1996; Shinozuka et al.
2000; Tzanetos et al. 2000; Sextos et al. 2003; Nuti and Vanzi 2004, 2005; Lupoi
et al. 2005, Carnevale et al. 2010, 2012a, b).

However, international codes do not consider or consider improperly these
actions, so that unsafe designs can result. The mean curve (red line for PR1, blue
line for PR2 in Fig. 8) and the mean plus (dot black line in Fig. 8) or minus (dashed
black line in Fig. 8) one standard deviation curves of the coherence, which were
calculated considering the fifty coherence curves of the signals generated at the
selected point for each procedure are shown in Fig. 8 in the range of frequencies
[0, 5 Hz]. The coherences calculated for each frequency by the coherence model
(Eq. 5a, black line in Fig. 8), which is assumed for the propagation and calibrated
properly for each procedure (PR1 and PR2, Sect. 2.3), are very similar to the value
of the mean curve of the coherences calculated between the signals generated by the
two procedure (red line for PR1, blue line for PR2 in Fig. 8). Furthermore, the
value of the coherence model (black line in Fig. 8) is for many frequencies included
in the coherence range values defined by the coherence mean plus (dot black line in
Fig. 8) or minus one standard deviation curves (dashed black line in Fig. 8).

The coherence difference due to inevitable numerical errors is small.

2.4.3 Comparison Among the Acceleration Response Spectra Sa

The acceleration response spectrum (Sa) was calculated for each generated signal at
bridge foundation points AQA, AQV, AQ5 and AQ8 (Fig. 1) by procedure PR1 or
PR2 by a user-defined MATLAB function.

Furthermore, the Sa mean curves (red line for PR1, blue line for PR2 in Figs. 9,
10, 11 and 12) and the mean plus (dot red line for PR1, dot blue line for PR2 in
Figs. 9, 10, 11 and 12) or less (dashed red line for PR1, dashed blue line for PR2 in
Figs. 9, 10, 11 and 12) one standard deviation curves were calculated considering
the fifty Sa of the generated signals for procedure PR1 or PR2 in the range of
periods [0, 2.5 s].

The green lines in Fig. 9 and Fig. 10 represent the Sa of the input recorded
signals at AQA and AQV respectively. It is evident by the comparison between the
mean Sa curves of the generated signals (red line for PR1, blue line for PR2 in
Figs. 9 and 10) and the ones of the recorded signals (green line in Figs. 9 and 10)
that both procedures PR1 and PR2 are able to generate surface signals with very
good agreement with the input recorded ones at AQA and AQV in term of Sa.

Furthermore, the value of the Sa of the input signals (green line in Figs. 9 and
10) is for many periods included in the Sa range values defined by the Sa mean plus
(dot red line for PR1, dot blue line for PR2 in Figs. 9 and 10) or minus (dashed red
line for PR1, dashed blue line for PR2 in Figs. 9 and 10) one standard deviation
curves.
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Fig. 8 Comparison between the procedure PR1 (first column) and PR2 (second column)
coherence between the bridge foundations AQA-AQV (first row), AQA-AQ5 (second row) and
AQA-AQ8 (third row) (Fig. 1); mean curve of the coherence considering the fifty generations (red
line for PR1, blue line for PR2) and mean plus (dot black line) or minus (dashed black line) one
standard deviation curves considering the fifty generations. The black line is the coherence
estimated by the coherence numerical model (Eq. 5a) assumed in the generation procedure (GAS
2.0, Sect. 2.1)
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Fig. 9 Comparison between procedures PR1 (first row) and PR2 (second row) acceleration
response spectra (Sa) at AQA bridge foundation (Fig. 1) for each generated accelerograms (black
dot lines); mean of the Sa considering fifty generations (red line for PR1, blue line for PR2); mean
plus (dot red line for PR1, dot blue line for PR2) or minus (dashed red line for PR1, dashed blue
line for PR2) one standard deviation considering fifty generations. The Spa of the input
accelerograms at AQA is given in green line
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Fig. 10 Comparison between procedures PR1 (first row) and PR2 (second row) acceleration
response spectra (Sa) at AQV bridge foundation (Fig. 1) for each generated accelerograms (black
dot lines); mean of the Sa considering fifty generations (red line for PR1, blue line for PR2); mean
plus (dot red line for PR1, dot blue line for PR2) or minus (dashed red line for PR1, dashed blue
line for PR2) one standard deviation considering fifty generations. The Spa of the input
accelerograms at AQV is given in green line

192 D. Lavorato et al.



A
Q

5

PR
1 

PR
2 

Fig. 11 Comparison between procedures PR1 (first row) and PR2 (second row) acceleration
response spectra (Sa) at AQ5 bridge foundation (Fig. 1) for each generated accelerograms (black
dot lines); mean of the Sa considering fifty generations (red line for PR1, blue line for PR2); mean
plus (dot red line for PR1, dot blue line for PR2) or minus (dashed red line for PR1, dashed blue
line for PR2) one standard deviation considering fifty generations
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Fig. 12 Comparison between procedures PR1 (first row) and PR2 (second row) acceleration
response spectra (Sa) at AQ8 bridge foundation (Fig. 1) for each generated accelerograms (black
dot lines); mean of the Sa considering fifty generations (red line for PR1, blue line for PR2); mean
plus (dot red line for PR1, dot blue line for PR2) or minus (dashed red line for PR1, dashed blue
line for PR2) one standard deviation considering fifty generations
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This is important, as the Sa measures the effects of the generated earthquake
signals on structures (Monti et al. 1994, 1996; Shinozuka et al. 2000; Tzanetos et al.
2000; Sextos et al. 2003; Nuti and Vanzi 2004, 2005; Lupoi et al. 2005; Carnevale
et al. 2010, 2012a, b).

The generated signals can be used in a proper structural long structure design
and the proposed procedures represent valid generation tools for designers.

3 Conclusion

In this chapter, a propagation model to generate a random field (RF) of asyn-
chronous earthquake signals at different points for the same seismic event was
presented. The model is applied to a real case, and the model results are compared
with the real recordings.

Two generation procedures (PR1 and PR2, Fig. 1) are used to obtain asyn-
chronous accelerometric signals at the foundations of a long bridge with eight
foundation points. The bridge is placed in the Aterno Valley, where the EW
components of the L’Aquila main shock (4-6-2009) accelerometric signals (which
are the input for both procedures), were recorded at two stations (AQA and AQV,
Fig. 1).

The first procedure PR1 performs an asynchronous earthquake signals genera-
tion directly at the soil surface (Fig. 1). The second procedure PR2 performs an
asynchronous earthquake signals propagation at bedrock starting from two input
bedrock signals (Fig. 1). The asynchronous signals generated at surface by means
of PR1 or PR2 procedures are compared in terms of signals characteristics (Fast
Fourier Transformation amplitude spectra and coherence among signals at different
generation points) and of structural response (acceleration response spectra) at
bridge foundations AQA, AQV, AQ5 and AQ8 (Fig. 1).

In particular, fifty asynchronous signals are obtained by means of the two pro-
cedures (PR1 or PR2) at each selected foundation point, and elaborated to obtain
Fourier amplitude spectra (FFT-AMP), coherence between couple of distant points
along the bridge (Cohere) and acceleration response spectra (Sa).

The comparison among the FFT-AMP and Sa curves of the generated signals at
AQA and AQV stations by PR1 or PR2 with the ones obtained by the elaboration of
the input signals (real seismic recordings) at the same points showed that both the
procedures can generate reliable earthquake signals.

The coherences for each frequency calculated by means of the generated signals
at distant foundation points along the bridge (AQA-AQV, AQA-AQ5 and
AQA-AQ8, Fig. 1) were in good agreement with the ones obtained by the input
numerical model assumed in the propagation procedure, for both procedures. The
coherence difference due to inevitable numerical errors is small.
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This is important as the coherence measures the variation of the signals fre-
quency content during the propagation of the seismic wave from point to point. This
difference among the signals characteristics produces relative displacements among
the different foundation points, which have to be considered properly during the
design of long structures such as bridges (Monti et al. 1994, 1996; Shinozuka et al.
2000; Tzanetos et al. 2000; Sextos et al. 2003; Nuti and Vanzi 2004, 2005; Lupoi
et al. 2005; Carnevale et al. 2010, 2012a, b).

Procedure PR2 requires detailed knowledge of the soil properties and produces
very similar results to PR1’s. However, PR1 is simpler than PR2; besides, few
surface recordings are usually available for the same seismic event and there are
usually different soil units in correspondence of the foundations of long structures
such as bridges.

For that reason, procedure PR2 is also a valid solution to generate surface
Random Fields, since it is possible to obtain bedrock signals by the available
surface recordings, to perform the bedrock propagation (which is simple since there
is only one soil type) and finally to obtain the surface signal. As a final remark, it
must be noticed that both (artificial) procedures, produce signals that are in rea-
sonable agreement with the real recorded ones.
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Seismic Response Analysis with Spatially
Varying Stochastic Excitation

Katerina Konakli

Abstract Assessment of the seismic vulnerability of extended structures (e.g.
bridges and lifelines) as well as of systems of structures covering extended areas
requires to properly account for the effects of ground-motion spatial variability.
Even in cases with relatively uniform soil conditions, ground motions may exhibit
significant variations due to the incoherence and wave-passage effects, respectively
manifested as random differences and deterministic time delays. Differential soil
conditions cause additional variations in the amplitude and frequency content of the
ground motions as these propagate from the bedrock to the surface level. The
present chapter describes methods for the modeling of ground-motion spatial
variability, the simulation of spatially varying ground-motion arrays and the eval-
uation of the response of multiply-supported structures to differential support
excitations. The pertinent uncertainties in the characteristics of the ground motions
are accounted for by employing concepts from stochastic time-series analysis. In
particular, the notion of coherency is employed to describe the spatial variability of
the ground-motion arrays, which are considered as realizations of a random field at
the locations of interest. The statistical properties of the ground motions at separate
locations are described through the respective auto-power spectral densities.
A statistical characterization of linear structural response to differential support
motions is obtained by means of a response-spectrum method, rooted in random
vibration theory, while the non-linear response is investigated on the basis of the
‘equal-displacement’ rule. This chapter is inspired by the doctoral research of the
author under the supervision of Professor Armen Der Kiureghian.
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1 Introduction

Several recent earthquake events across the globe highlight the need for improved
measures to safeguard people’s lives and properties in seismic vulnerable areas. The
immense uncertainties associated with the occurrence and the characteristics of
future ground motions pose a major challenge in dealing with seismic risk. The
work of Professor Armen Der Kiureghian has been fundamental in achieving this
goal by offering pioneering methods for addressing uncertainty in the field of
earthquake engineering, among his numerous valuable contributions in the broader
fields of risk and reliability (e.g. Der Kiureghian and Liu 1986; Der Kiureghian and
Ke 1988; Der Kiureghian et al. 1994; Song and Der Kiureghian 2003; Straub and
Der Kiureghian 2010).

Inspired by the doctoral work of the author under the supervision of Professor
Der Kiureghian, the present chapter focuses on a particular aspect of seismic
analysis that is the spatial variability exhibited by earthquake-induced ground
motions and its effects on structural response. The importance of incorporating
these effects in seismic response analysis arises from the fact that seismic ground
motions may exhibit significant variations over distances that are comparable to the
dimensions of extended structures, such as bridges and lifelines. Furthermore, the
ground-motion spatial variability comes into play when examining seismic vul-
nerability at a systemic level, considering the infrastructure of entire communities
rather than independent structures. It should be emphasized that awareness on the
need for a systemic perspective is currently growing in the engineering research
community.

This chapter provides an overview on the following topics: the modeling
of ground-motion spatial variability, the simulation of spatially varying
ground-motion arrays and the response analysis of extended structures subject to
differential support excitations. In the relevant methods presented herein, effects of
uncertainties are incorporated by considering the ground-motion time histories as
realizations of stochastic processes exhibiting spatial correlations. To this end,
mathematical tools for time-series analysis in both the time and frequency domains
are employed.

Following the Introduction, the coherency function is presented in the next
section, as a means of describing the spatial variability of stochastic processes in the
frequency domain. Moreover, popular models for the coherency function in
the field of earthquake engineering are described. The section continues with the
estimation of coherency from ground-motion records, including a case study using
accelerograms from the 2004 Parkfield earthquake in California.

The subsequent section describes a method for simulating ensembles of spatially
varying ground-motion arrays consistent with a prescribed coherency function. It is
underlined that because recorded strong ground-motion arrays remain scarce,
methods for generating such arrays synthetically are essential in earthquake engi-
neering research and practice. The method described herein relies on the theory of
Gaussian random processes. Two approaches are presented: in the so-called
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unconditioned approach, the power spectral density of the acceleration process at a
reference site is defined on the basis of a given recorded or synthetic accelerogram.
In this case, ensembles of simulated arrays exhibit uniform variability at different
locations, a necessary property when these motions are used as input for statistical
analyses of structural responses. In the second approach, a specific realization
(a recorded or synthetic accelerogram) at a reference site is defined and consistent
time histories are simulated at the locations of interest. The latter comprises the
conditioned approach.

In the next part of this chapter, the focus is set on methods for the evaluation of
structural response to differential support excitations. First, a response-spectrum
method is described, rooted in the theory of random vibrations. This method is well
known as the Multiple-Support Response-Spectrum (MSRS) rule. Developed by
Der Kiureghian and Neuenhofer (1992), the MSRS rule is nowadays incorporated
in seismic design codes. The extension of the MSRS rule to account for quasi-static
contributions of truncated high-frequency vibration modes, developed by Konakli
and Der Kiureghian (2011a), is also presented. In the sequel, effects of spatial
variability on the ‘equal-displacement’ rule, relating mean peak non-linear to mean
peak linear structural responses, are discussed.

A summary is included in the final section of this chapter, followed by a grateful
acknowledgement to Professor Der Kiureghian.

2 Modeling of Ground-Motion Spatial Variability

2.1 The Coherency Function

The spatial variability manifested in earthquake-induced ground motions can be
attributed to three main effects, namely the incoherence, the wave-passage and the
site-response effects (Der Kiureghian 1996). The incoherence effect represents
random differences in the amplitudes and phases of seismic waves due to reflections
and refractions that occur as the waves propagate in the heterogeneous soil medium
and also, due to the super-positioning of waves arriving from different parts of an
extended source. The wave-passage effect represents the deterministic time-lag that
characterizes the arrival of seismic waves at separate locations. The site-response
effect represents the influence of varying local soil profiles on the amplitude and
frequency content of the bedrock motions as they propagate upwards to the surface.
The aforementioned effects are incorporated into the complex-valued coherency
function, which models the ground-motion spatial variability in the frequency
domain. Details on the coherency function are given in the sequel.

Let uk̈ðtÞ and ul̈ðtÞ denote a pair of stationary random processes modeling the
ground-motion accelerations at locations k and l respectively. The coherency
function that characterizes the spatial variability between the two locations is a
normalized version of the cross-power spectral density (PSD) of u ̈kðtÞ and ul̈ðtÞ:
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γklðωÞ=
Gu ̈k ülðωÞ

½Gu ̈k ük ðωÞGülülðωÞ�1 2̸ . ð1Þ

where GxyðωÞ denotes the cross-PSD of the random processes xðtÞ and yðtÞ, and
GxxðωÞ denotes the auto-PSD of process xðtÞ. Although earthquake ground motions
are not stationary, the above definition of the coherency function is commonly used
to describe their spatial variability under the assumption that the strong-motion
phase of an accelerogram is nearly stationary.

In the case of uniform soil conditions, the modulus of the coherency function
characterizes the incoherence effect, whereas its phase angle characterizes the
wave-passage effect. Der Kiureghian (1996) has shown that, under the assumption
of vertical wave propagation from the bedrock level to the ground surface, the
site-response effect influences only the phase angle of the coherency function. This
assumption can be employed in the case of far-field earthquake records. In this case,
the coherency function can be written in the form:

γklðωÞ= γklðωÞj jexp fi½θwpkl ðωÞ + θsrkl ðωÞ�g ð2Þ

where θwpkl ðωÞ and θsrklðωÞ respectively denote the phase angles due to wave-passage
and site-response effects. It is noted that in the case of near-fault motions,
site-response effects may also influence the coherency modulus.

Based on the physics of wave propagation and certain simplifying assumptions,
it is possible to develop theoretical models to describe the phase angle caused by
the wave-passage and site-response effects (the latter for far-field sites). The phase
angle due to the wave-passage effect is typically evaluated as (Luco and Wong
1986; Der Kiureghian 1996):

θwpkl ðωÞ= −
ωdLkl
νapp

ð3Þ

where dLkl is the projected algebraic horizontal distance in the longitudinal direction
of propagation of waves and νapp is the surface apparent wave velocity. Under the
assumptions of linear (or linearized) behavior of the soil columns, vertical wave
propagation at each site and neglect of dynamic interaction between sites, the phase
shift due to the site-response effect is given by (Der Kiureghian 1996):

θsrklðωÞ= tan− 1 lm½HkðωÞHlð−ωÞ�
Re½HkðωÞHlð−ωÞ� ð4Þ

where HkðωÞ is the frequency-response function for the absolute acceleration
response of the soil column at location k.

The inherently random nature of the incoherence effect renders the description of
the coherency modulus more challenging. One approach is to use a semi-empirical
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model, i.e. a theoretical model employing parameters that can be determined
through statistical inference. Another approach is to develop a purely empirical
model using data from recorded acceleration arrays. Empirical models account for
the complex phenomena that occur during wave propagation and are not captured
by simplified mathematical models, but characterize only the specific rupture
mechanisms and soil topographies present in the data. Among the most quoted
empirical models are those by Harichandran and Vanmarcke (1986) and Abra-
hamson et al. (1991), which are based on ground motions recorded by two arrays
located in an alluvial valley in Taiwan. Ancheta et al. (2011) updated the coeffi-
cients of the latter so that the new model additionally fits data from the Borrego
Valley Differential Array in California.

One of the most widely used semi-empirical models in engineering applications
was derived by Luco and Wong (1986) considering the propagation of shear waves
in a random medium. According to this model, the coherency modulus for a pair of
acceleration processes at stations k and l separated by a distance dkl is evaluated as:

γklj j= exp ½− ðαdklωÞ2� ð5Þ

in which the coherency drop parameter α is given by α= η ν̸s, where vs is the
average shear-wave velocity of the ground medium along the wave travel-path and
η is a constant. Luco and Wong suggested that typical values of α approximately
vary from 2 × 10–4 to 3 × 10–4 s/m, whereas Zerva and Harada (1994) proposed
an analytical expression for α in terms of the properties and depth of the soil layers
at the site under consideration. The Luco and Wong model represents a special case
of the model developed by Der Kiureghian (1996) based on the theory of random
processes.

2.2 Estimation of the Coherency Modulus

Consider an array of zero-mean, jointly stationary Gaussian ground-acceleration
processes at n sites defined by auto-PSDs GkkðωÞ, k=1, 2, . . . , n, and cross-PSDs
Gkl ωð Þ, k, l=1, 2, . . . , n, for k≠ l. Let akðtiÞ and alðtiÞ, i=1, . . . ,N, represent
realizations of the acceleration processes at locations k and l respectively, each
sampled at equal time intervals Δt, i.e. ti = ði− 1ÞΔt. To simplify the algebra, N is
considered even. According to Eq. 1, estimation of the coherency function from
given realizations requires the respective auto- and cross-PSDs. Under the
assumption of ergodicity, these quantities can be estimated from a single realization
of a random field, as described below.

An estimator of the auto-PSD of the acceleration record at location k is the
periodogram:

Seismic Response Analysis with Spatially … 203



Ikk ωp
� �

= ðNΔt 4̸πÞ A2
pk +B2

pk

� �
ð6Þ

in which ωp =2πp N̸Δt, p=1, . . . ,N 2̸− 1, denote discrete frequencies and
Apk,Bpk

� �
are the Fourier coefficients of the acceleration record (Chatfield 2004).

Though asymptotically unbiased, the periodogram is an inconsistent estimator and
exhibits erratic behavior. The traditional method to obtain a consistent estimator is
to smooth the periodogram over a frequency band (Brillinger 2001). The resulting
estimates of the PSD depend on the selected width of the smoothing window and, to
a lesser extent, on the type of smoother (Priestley 1981). Because smoothing
introduces bias to the estimates, the width of the smoothing window should be
selected considering the tradeoff between bias and variance.

A consistent estimator of the cross-PSD of two acceleration records is the
smoothed cross-periodogram. The real and imaginary parts of the
cross-periodogram are respectively determined by Chatfield (2004):

Re IklðωpÞ
� 	

= ðNΔt 4̸πÞ ApkApl +BpkBpl
� � ð7Þ

and:

Im IklðωpÞ
� 	

= ðNΔt 4̸πÞ ApkBpl −AplBpk
� � ð8Þ

Finally, an estimate of the coherency function is obtained by substituting in
Eq. 1 the smoothed version of IklðωÞ in the place of GklðωÞ and the smoothed
versions of IkkðωÞ and IllðωÞ in the places of GkkðωÞ and GllðωÞ respectively. To
estimate the coherency modulus for a pair of accelerograms at sites k and l, the real
and imaginary parts of the coherency function are substituted into the expression

γklðωÞj j= Re γklðωÞð Þ½ �2 + Im γklðωÞð Þ½ �2
n o1 2̸

.

2.3 The Case of the UPSAR Array

Recordings of the UPSAR array during the 2004 Parkfield earthquake in California
provided a rare opportunity to examine the coherency function for near-fault strong
ground motions. Konakli et al. (2014) investigated the coherency modulus for this
particular event and tectonic setting and compared their estimates with commonly
used semi-empirical and empirical models. This subsection provides a summary of
the analysis and main findings of this study.

The coherency analysis in Konakli et al. (2014) was based on the acceleration
time-histories recorded at the 12 operational stations of the UPSAR array. By
focusing on inter-station distances 0–500 m, the analysis considered 47 station
pairs. Estimates of the coherency modulus were obtained for each station pair and
for each of the EW, NS (two horizontal) and UD (vertical) components, by
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analyzing nearly-stationary segments of the recorded accelerograms. The consid-
ered segments were defined by a time window of 7.5 s width, containing the
strongest shaking. The selection of the time window was based on an analysis of the
following three measures: the integral of the squared acceleration in time (M1),
the cumulative count of zero-level up-crossings (M2), and the cumulative count of
negative maxima and positive minima (M3). Figure 1 (originally presented in
Konakli et al. 2014) shows the time evolution of the aforementioned measures for
the accelerograms in the EW direction. Approximately constant slopes of the M1,
M2 and M3 curves respectively indicate nearly-constant variance, predominant
frequency and bandwidth (Rezaeian and Der Kiureghian 2008). The resulting
periodograms for the so selected segments were smoothed using a 5-point Ham-
ming window. Details on the selection of the smoothing window can be found in
Konakli et al. (2014).

In order to compare the coherency estimates from the UPSAR recordings to the
model by Luco and Wong, values of parameter α in Eq. 5 that fit the UPSAR
estimates were determined by means of non-linear least-squares minimization. In
examining the coherency at specific distances as a function of frequency, the
least-squares minimization was applied on the variance-stabilizing transformation
tanh− 1 γklj j (Abrahamson et al. 1991; Ancheta et al. 2011). Figure 2 (originally
presented in Konakli et al. 2014) shows the fitter values versus inter-station dis-
tances for pairs of components in the NS, EW and UD directions. The figure
indicates a strong dependence of α on distance, with α tending to decrease with
increasing inter-station distance at a rate that is higher at smaller distances. Overall,
the fitted α values for the vertical component are slightly larger than those for the
two horizontal components, which tend to be close to each other. This indicates a
slightly larger spatial variability among the vertical components than among the
horizontal components for the same inter-station distance. The estimated standard
deviations of the fitted α values normalized with the respective α values were below
0.2 in all cases.

It is noted that under the assumption of homogeneity, a single estimate of the
coherency modulus can be obtained for a relatively narrow inter-station distance bin
through averaging. Moreover, under the assumption of isotropy, a single estimate

M1 M2 M3

Fig. 1 Evolving measures of variance, predominant frequency and bandwidth of the UPSAR
accelerograms in the EW direction
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can be obtained for the horizontal component of the ground motion. This averaging
is important in reducing the noise in the estimates. Fitted α values under the
assumptions of homogeneity and isotropy are reported in Konakli et al. (2014).

Next, the behavior of the coherency modulus as a function of inter-station dis-
tance is examined at specific frequencies. In this case, the non-linear least-squares
minimization is directly applied on γklj j. Figure 3 (originally presented in Konakli
et al. 2014) shows the α values obtained for each of the NS, EW and UD com-
ponents. Frequencies up to 2.5 Hz are shown, because coherency estimates for
higher frequencies are dominated by noise. Considering the frequency range below
1.5 Hz, where the effect of noise is relatively small, the figure indicates both
direction dependence, with smaller values of α corresponding to the horizontal
components, and frequency dependence, with values of α tending to decrease with
increasing frequency. The respective estimates of the standard deviation normalized
with the fitted α value were below 0.14 in all cases.

α

Fig. 2 Fitted α values versus distance using coherency estimates as a function of frequency

α

ω π

Fig. 3 Fitted α values versus frequency using coherency estimates as a function of distance
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According to Figs. 2 and 3, the estimates of α for the UPSAR recordings are
within the range suggested by Luco and Wong for distances approximately in the
range 100–300 m and for frequencies approximately in the range 0.5–2 Hz.
However, unlike the Luco and Wong model where α is a constant, the UPSAR data
indicate dependence of α on both inter-station distance and frequency. It is also
noted that the rate of decay of the coherency modulus with frequency and distance
tends to be higher for the vertical component. This trend is more pronounced for the
rate of decay of the coherency modulus with distance at the lower frequencies.

Konakli et al. (2014) further compared estimates of the coherency modulus from
the UPSAR recordings with two widely used empirical models. They considered
the empirical model by Ancheta et al. (2011) for inter-station distances smaller than
100 m and the model by Harichandran and Vanmarcke (1986) for inter-station
distances larger than 100 m. As mentioned earlier in this section, the model by
Ancheta et al. (2011) is an update on the earlier model by Abrahamson et al. (1991).
For separation distances 100–300 m, the empirical model was found to be in fair
agreement with the UPSAR estimates for frequencies up to approximately 4 Hz.
For smaller separation distances, the UPSAR coherency modulus was found smaller
than that given by the empirical model in the entire frequency range examined, but
the trend reversed for separation distances greater than 300 m. These differences
indicated a complex dependence of the spatial variability exhibited by earthquake
ground motions on source, propagation, topography and site effects.

3 Simulation of Spatially Varying Ground Motions

3.1 The Unconditioned and Conditioned Approaches

The simulation method described in the present section, originally proposed by
Konakli and Der Kiureghian (2012a), generates arrays of ground-motion time
histories with temporal and spectral non-stationarity, incorporating effects of
incoherence, wave passage and differential site response. The method is based on
the representation of ground accelerations as realizations of Gaussian random
processes and builds upon the earlier works of Vanmarcke and Fenton (1991),
Kameda and Morikawa (1992) and Liao and Zerva (2006). The required input
comprises: (i) a recorded or synthetic accelerogram at a reference site, (ii) a
coherency function that describes the spatial variability of the ground-motion
random field and (iii) the frequency-response functions of the soil columns at the
locations of interest.

Two approaches are considered. In the unconditioned approach, the simulated
motions are consistent with the statistical characteristics of the ground-motion
random field at the reference site, derived from the auto-PSD of the given
accelerogram. In the conditioned approach, the simulated motions are consistent
with the specific realization of the ground-motion random field at the reference site,
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represented by the given accelerogram. In the latter approach, the variance of the
simulated motions increases with increasing distance from the reference site, which
is an undesirable property if the motions are used to perform statistical analysis of
structural responses. The unconditioned approach should thus be considered when
uniform variance of the simulated motions at different locations is essential.

In both approaches, temporal and spectral non-stationarities are accounted for by
considering nearly stationary segments of the given accelerogram. These are used to
simulate consistent segments of acceleration time-histories at the target locations,
which are appropriately stitched together in the sequel. It is underlined that this
method is not directly applicable to near-fault ground motions that contain direc-
tivity pulses and thus, cannot be represented as stationary segments even in
approximation. One way to include the directivity pulse is to separately model the
pulse and superimpose it on a synthetic ground-motion array, the latter generated
according to the methodology presented herein.

In the following, after a brief description of the discrete representation of an
array of Gaussian processes, the conditioned and unconditioned simulation
approaches are outlined for the case of stationary motions. The extension to
non-stationary motions is explained in the sequel, followed by an example
application.

3.2 Discrete Representation of an Array of Gaussian
Processes

Similarly to the previous section, an array of zero-mean, jointly stationary Gaussian
acceleration processes at n sites is considered, defined by auto-PSDs GkkðωÞ,
k=1, 2, . . . , n, and cross-PSDs Gkl ωð Þ, k, l=1, 2, . . . , n, for k≠ l. Each process is
sampled at time instants ti = ði− 1ÞΔt, i=1, . . . ,N, with the number of samples N
considered even. Such an array of processes can be represented in terms of the finite
Fourier series (see, e.g. Chatfield 2004):

ak tið Þ=A0k + ∑
N 2̸− 1

p=1
Apk cos ωpti

� �
+Bpk sin ωpti

� �� 	
+ − 1ð ÞiA N 2̸ð Þk ð9Þ

where ωp =2πp N̸Δt are discrete frequencies and Apk,Bpk
� �

are the Fourier coef-
ficients. Note that the above representation uses N parameters to describe N
observations and can thus be made to exactly fit the given realizations.

The Fourier coefficients Apk,Bpk
� �

are zero-mean, jointly Gaussian random
variables, uncorrelated for different frequencies, i.e. E ApkAqk

� 	
=E BpkBqk

� 	
=

E ApkBqk
� 	

=0 for p≠ q. At frequency ωp, the following relations hold:
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E Apk Apl
� 	

=E Bpk Bpl
� 	

=
Gkk ωp

� �
Δω, if k= l

Re Gkl ωp
� �� 	

Δω, if k≠ l



ð10Þ

and

E Apk Bpl
� 	

= −E Bpk Apl
� 	

=
0, if k= l
Im Gkl ωp

� �� 	
Δω, if k≠ l



ð11Þ

with Δω=2π N̸Δt. Obviously, given the auto- and cross-PSDs (or equivalently the
auto-PSDs and the coherency function), the variance/covariances of all Fourier
coefficients can be determined.

3.3 Simulation of Stationary Motions
with the Unconditioned Approach

Let k=1, . . . , n denote the index of a target site with frequency-response functions
Hk ωð Þ and let γkl ωð Þ denote the coherency function describing the variability of the
motions between two sites k and l. Let Xp = Ap1 Bp1 . . . Apn Bpn½ � denote
the set of Fourier coefficients at frequency ωp and let Σpp denote the 2n×2n
covariance matrix of these coefficients. The covariance matrix fully defines the
zero-mean joint Gaussian distribution of vector Xp. The elements Σpp, ij of this
matrix are determined using Eqs. 10 and 11. The latter equations involve the
auto-PSDs Gkk ωp

� �
, k=1, . . . , n, and the cross-PSDs Gkl ωp

� �
, k, l=1, . . . , n, k≠ l.

To determine the auto-PSDs, first, the auto-PSD of the given realization is estimated
through the (optionally smoothed) periodogram given in Eq. 6. In the sequel, the
full set of auto-PSDs is obtained in terms of the estimated auto-PSD of the given
realization and the site frequency-response functions, using the relation between the
PSDs of the surface motions at two locations k and l:

GllðωÞ=GkkðωÞ Hl ωð Þj j2
Hk ωð Þj j2 ð12Þ

The above equation is based on the same assumptions as those behind Eq. 4. The
full set of cross-PSDs can then be obtained in terms of the auto-PSDs and the given
coherency function (see Eq. 1).

Once the covariance matrix is determined, sample vectors from the 2n-dimen-
sional zero-mean joint Gaussian distribution of Xp are obtained as xp =LT

pzp, where
Lp is an upper triangular matrix such that LT

pLp =Σpp and zp is a 2n-vector of
uncorrelated standard normal variables. A computationally efficient method to
obtain Lp is to write it as Lp =DpRp, where Dp is the diagonal matrix of standard
deviations and Rp is the Cholesky decomposition of the correlation matrix.
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After sampling at all frequencies ωp =2πp N̸Δt, p=0, 1, . . . ,N 2̸, Eq. 9 is used to
obtain the acceleration time-histories at the n sites. Note that the ground motions are
fully coherent at ωp =0 and the Fourier coefficients have the same values at all
locations. Thus, at ωp =0, one only needs to sample from a 1-dimensional
zero-mean Gaussian distribution with variance Gkk 0ð ÞΔω.

3.4 Simulation of Stationary Motions
with the Conditioned Approach

In the current approach, the Fourier coefficients of the acceleration processes at the
target locations are sampled from a joint Gaussian distribution derived by proba-
bilistic conditioning. Consider again the vector of zero-mean Fourier coefficients
Xp = Ap1 Bp1 . . . Apn Bpn½ � at frequency ωp, and the 2n×2n covariance
matrix Σpp of these coefficients. The vector Xp is partitioned into two subvectors,
Xp1 and Xp2, with the former including the Fourier coefficients at sites with known
ground motions. The conditional distribution of Xp2 given Xp1 = xp1 is jointly
normal with mean:

Mp, 21 =Σpp, 21 Σpp, 11
� �− 1xp1 ð13Þ

and covariance matrix:

Σp, 22 11 =Σpp, 22 −Σpp, 21 Σpp, 11
� �− 1Σpp, 12 ð14Þ

where Σpp, ij denotes the sub-matrix of Σpp giving the covariance of vectors Xpi and
Xpj. The covariance matrix Σpp, is obtained as described in the previous subsection.

The case when the acceleration process is specified at location k=1 only is
herein considered. Accordingly, conditioned acceleration time-histories are simu-
lated for locations k=2, . . . , n. The 2ðn− 1Þ-dimensional joint Gaussian distribu-
tion of the Fourier coefficients for the target n− 1 locations is defined through the
conditional mean vector and covariance matrix in Eqs. 13 and 14 respectively. In
these equations, xp1 = Ap1 Bp1½ � is the set of Fourier coefficients of the given
accelerogram. At each frequency ωp =2πp N̸Δt, p=1, . . .,N 2̸, a sample-set of
Fourier coefficients for the target locations is obtained as xp2 =Mp, 2j1 +LT

p, 2j1zp,
where Lp, 2 1 is an upper triangular matrix such that LT

p, 2j1Lp, 2j1 =Σpp, 22j11, and zp is
a 2ðn− 1Þ-vector of uncorrelated standard normal variables. Sampling is not
required for p=0, because at ωp =0 the ground motions are fully coherent and the
Fourier coefficients have the same values at all locations. After the vectors xp2 at all
frequencies are obtained, Eq. 9 is used to assemble the realizations of acceleration
time-histories at the target locations.
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3.5 Extension to Non-stationary Motions

As explained earlier, typical earthquake accelerograms that do not contain a
directivity pulse can be seen as consisting of nearly-stationary segments. The
segments should be defined so that they maintain nearly time-invariant statistical
characteristics, i.e. variance, predominant frequency and bandwidth, respectively
measured in terms of the integral of the squared acceleration in time, the cumulative
count of zero-level up-crossings and the cumulative count of negative maxima or
positive minima (see also the subsection on estimation of the coherency modulus).

The basic idea of the non-stationary extension of the unconditioned simulation is
to apply the method described earlier to each “stationary” segment of the given
accelerogram and then, for each location, assemble the entire realization by joining
together the corresponding simulated segments. Following the segmentation of the
given accelerogram, both ends of each segment need to be tapered with appropriate
(e.g. cosine-type) functions so as not to introduce fake high-frequency components
in the Fourier series. To avoid shifting the segments for different sites, the
wave-passage effect is separately applied as a deterministic time-shift on the entire
realization. Finally, the shifted accelerograms are further processed following
standard techniques in earthquake engineering, i.e. subtraction of the mean value of
the entire acceleration time-history, application of a short cosine taper function to
set the initial value to zero and application of a high-pass filter to ensure zero
residual velocity and displacement. The resulting acceleration time-histories are
integrated to obtain the corresponding velocity and displacement realizations.

The non-stationary extension of the conditioned simulation method is performed
in a manner similar to that described above for the unconditioned simulation.
However, in order to obtain a consistent set of ground motions, the given
accelerogram at the reference site must be slightly modified by joining together the
tapered segments and post-processing the entire time-history in a manner identical
to the simulated motions. The resulting motion at the reference site does not have
any random characteristics but is slightly different from the given record. The
segmentation and post-processing mainly influence the low-frequency content of
the motion, which is more apparent in the displacement waveform. As a result, the
displacement time-history of the original record may somewhat differ from the
simulated displacement time-history at zero distance. If accurate representation of
the displacement time-history of the original record is important, the following
alternative procedure can be applied: (a) the low-frequency component of the
original record is separated, e.g. by use of a high-pass filter; (b) conditioned
non-stationary motions are simulated based on the remaining component; (c) the
low-frequency component is added back to the simulated time-histories after it has
been deterministically modified to account for the wave-passage effect and,
optionally, for the site-response effect.
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3.6 Example Application

An example application from Konakli and Der Kiureghian (2012a) is herein pre-
sented in brief. Support motions are simulated for an example four-span bridge in
California with its five supports located at sites with varying soil conditions. The
five supports comprise abutment 1, bent 2, bent 3, bent 4 and abutment 5. The
acclererogram at the reference site (abutment 1) is the fault-normal component of
the Izmit record from the 1999 Kocaeli earthquake. For further details on the bridge
configuration and the characteristics of the ground motion random field, the reader
is referred to Konakli and Der Kiureghian (2012a).

Figure 4 shows example sets of support motions generated with the uncondi-
tioned and conditioned approaches (left and right graphs respectively). For each
example simulation, acceleration, velocity and displacement time-histories at the
five supports are shown. Note that both simulation approaches preserve the
non-stationary nature of the ground motion and that all records approach zero with
increasing time. The motions in the pair of abutments 1 and 5 and the pair of bents 2
and 4 differ only due to incoherence and wave passage, and thus, have the same
frequency contents. For any other pair of support motions, the variability is addi-
tionally due to the effect of varying soil conditions. These differences in the fre-
quency contents are more apparent in the acceleration than in the velocity and
displacement time-histories, with the lower frequency contents indicating softer
sites.

Figure 5 shows 5% damped pseudo-acceleration response spectra at each sup-
port point for 20 realizations obtained from unconditioned and conditioned simu-
lations (left and right graphs respectively). For the unconditioned case, the
variances at all support points are similar, which, as explained before, is a desirable
characteristic for ground motions to be used in statistical analyses of structural
responses. For the conditioned case, one notes the increasing variance of the
spectral amplitude with increasing distance from abutment 1, at which the variance
is zero.

Figure 6 compares the acceleration coherency estimates from the simulated
motions with the corresponding target theoretical models for an example pair of
support points (abutment 1 and bent 3). The real and imaginary parts of the
coherency function are shown in the upper and bottom graphs respectively. The
coherency estimates are obtained by averaging the estimates from 20 realizations.
Excellent agreement of the coherency estimates with the theoretical model validates
the accuracy of both the unconditioned and the conditioned approaches (see left and
right graphs of the figure respectively). It is noted that an equally good agreement of
the estimated coherency with the target theoretical models has also been verified for
the other pairs of supports.
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Unconditioned approach Conditioned approach

Fig. 4 Example sets of simulated support motions
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4 Structural Response to Differential Support Excitation

4.1 Linear Response Analysis with Response-Spectrum
Methods

Analysis of structural response to differential support excitations can be performed
using time-history analysis (e.g. Saxena et al. 2000; Sextos et al. 2004; Lou and
Zerva 2005; Lupoi et al. 2005) the methods of random vibration (e.g. Dumanogluid
and Soyluk 2003; Zembaty and Rutenberg 2002; Zhang et al. 2009; Heredia‐Zavoni
et al. 2015) or response spectrum methods (e.g. Berrah and Kausel 1992;

Unconditioned approach Conditioned approach

Fig. 5 Pseudo-acceleration response spectra for 20 simulated arrays
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Der Kiureghian and Neuenhofer 1992; Konakli and Der Kiureghian 2011a). The
random vibration and response spectrum approaches provide a statistical charac-
terization of the response and therefore, their results are not specific to a particular
set of ground motions. In this respect, the aforementioned two approaches are
deemed advantageous to time-history analysis. Due to the simplicity of character-
izing ground motions with response spectra, the response-spectrum approach is
particularly appealing in engineering practice.

The Multiple-Support Response-Spectrum (MSRS) rule, developed by Der
Kiureghian and Neuenhofer (1992), evaluates the mean peak response of
multiply-supported linear structures subjected to spatially varying ground motions.
This rule has become a popular method of analysis of multiply-supported structures
(see, e.g. Kahan et al. 1996; Soyluk 2004; Wang and Chen 2005; Yu and Zhou
2008; Wang and Der Kiureghian 2014) and is also incorporated by seismic codes
(Eurocode 8 1998). The original formulation of this method only considered
responses that could be expressed as linear functions of the total displacements at
unconstrained degrees of freedom (DOF) of the structure. Konakli and Der
Kiureghian (2011a) generalized the original formulation to account for response
quantities that also depend on the support motions. Such dependence is pervasive
among response quantities of interest; for instance, when rotational DOF are con-
densed out in the analysis, most response quantities of interest indirectly depend on
the support motions. Konakli and Der Kiureghian (2011a) further developed an
extended version of the MSRS rule that accounts for quasi-static contribution of
truncated high-frequency modes. This extension is particularly important in engi-
neering practice, where computational costs necessitate the truncation of modes
beyond a number far smaller than the total number of DOF of the structure.
The generalized and extended MRSS rules are described in the sequel.

Unconditioned approach Conditioned approach

Fig. 6 Acceleration coherency estimates from 20 simulated arrays
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4.2 The Generalized MSRS Rule

Consider a linear structural system with N unconstrained DOF and subjected to m
support motions. Let x= x1 . . . xN½ �T denote the N-vector of (total) displace-
ments at the unconstrained DOF and u= u1 . . . um½ �T denote the m-vector of
prescribed support displacements. Assuming classical damping, let
Φ= Φ1 . . . ΦN½ �, ωi and, ζi, i=1, . . . ,N, respectively denote the modal
matrix, natural frequencies, and modal damping ratios of the fixed-base structure.
Moreover, let skiðtÞ denote the normalized response of the ith mode to the kth
support motion, obtained as the solution to:

sk̈i tð Þ+2ζiωisk̇i tð Þ+ω2
i ski tð Þ= − u ̈kðtÞ ð15Þ

A generic response quantity of interest zðtÞ can be written as a linear combi-
nation of the support displacements and the displacements at the unconstrained
DOF:

z tð Þ= qTuu tð Þ+ qTx xðtÞ ð16Þ

where qu = qu, 1 . . . qu,m½ �T and qx = qx, 1 . . . qx,N½ �T are coefficient vectors.
Equation 16 represents a generalization of the original formulation by Der
Kiureghian and Neuenhofer (1992), who considered z tð Þ a function of x tð Þ only.
This generalization allows consideration of response quantities that are functions of
displacements at both the constrained as well as support DOF, e.g. the drift of a
bridge column or an internal force of a structural model with condensed rotational
DOF.

Based on principles of modal analysis, Eq. 16 can be written as (Konakli and
Der Kiureghian 2011a):

z tð Þ= ∑
m

k=1
akuk tð Þ+ ∑

m

k =1
∑
N

i=1
bkiskiðtÞ ð17Þ

where ak represents the response quantity of interest when the kth support DOF is
statically displaced by a unit amount while all other support DOF remaining fixed,
and bki represents the contribution of the ith mode to the response arising from the
excitation at the kth support DOF when the normalized modal response skiðtÞ is
equal to unity. The coefficients ak and bki are given by:

ak = qu, k + qTx rk ð18Þ

where rk represents the displacements at the unconstrained DOF when the kth
support DOF is displaced by a unit amount, and:
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bki =qTxΦi βki ð19Þ

where βki =ΦT
i Mrk Φ̸T

i MΦi is the modal participation factor associated with the
ith mode and kth support DOF; in the latter expression, M denotes the mass matrix
of the structure associated with the unconstrained DOF. The coefficients ak and bki
depend only on the structural properties and can be computed by use of any
conventional static analysis program (see Konakli and Der Kiureghian 2011a, b, for
further details on properties of these coefficients and their computation).

Using Eq. 17 and the principles of stationary random vibration theory, the mean
of the peak of the generic response quantity zðtÞ can be approximately obtained in
the form (Der Kiureghian and Neuenhofer 1992):

E max zðtÞj j½ �

≈ ∑
m

k=1
∑
m

l=1
akalρukuluk,maxul,max

�

+2 ∑
m

k=1
∑
m

l=1
∑
N

j=1
akbljρuksljuk,maxDlðωj, ζjÞ

+ ∑
m

k=1
∑
m

l=1
∑
N

i=1
∑
N

j=1
bkibljρskisljDkðωi, ζiÞDlðωj, ζjÞ

#1 2̸

ð20Þ

The preceding equation represents the MSRS combination rule. The mean of the
peak response is given in terms of: (i) the structural properties, reflected in the
coefficients ak and bki, (ii) the mean peak ground displacements uk, max and
the ordinates of the mean displacement response spectra Dkðωi, ζiÞ, and (iii) three
sets of correlation coefficients. The latter comprise the coefficients ρukul , describing
the correlation between the kth and lth support displacements, the coefficients ρukslj ,
describing the correlation between the kth support displacement and the response of
the jth mode to the lth support motion, and the coefficients ρskislj , describing the
correlation between the responses of the ith and jth modes to the kth and lth support
motions respectively.

The correlation coefficient for two processes x tð Þ and yðtÞ is defined as:

ρxy =
∫ +∞

−∞ Gxy ωð Þdω
½∫ +∞

−∞ Gxx ωð Þdω ∫ +∞
−∞ Gyy ωð Þdω�1 2̸ ð21Þ

where Gxx ωð Þ is the auto-PSD of x tð Þ, and Gxy ωð Þ= γxy ωð Þ½Gxx ωð ÞGyy ωð Þ�1 2̸ is the
cross-PSD of xðtÞ and yðtÞ, with γxy ωð Þ denoting the coherency function. The
processes involved in the computation of the correlation coefficients of the MSRS
rule are the support displacements uk tð Þ and the normalized modal responses ski tð Þ.
The auto-PSD of uk tð Þ can be obtained in terms of the response spectrum Dkðω, ζÞ,
while the auto-PSD of ski tð Þ additionally involves the frequency-response function
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of the ith mode (see Der Kiureghian and Neuenhofer 1992, for details). It follows
that the complete set of correlation coefficients can be obtained in terms of the
response spectra at the support DOF, the coherency function and the modal
properties of the structure.

Konakli and Der Kiureghian (2012b) investigated the accuracy of the MSRS rule
by comparing the MSRS estimates of mean peak structural responses with the
corresponding ‘exact’ mean values obtained by time-history analysis. The consid-
ered structural systems comprised four bridge models designed by the California
Department of Transportation and characterized by distinctly different configura-
tions and dynamic properties. The focus of the study was set on pier drifts, which
are quantities particularly important in performance-based design of bridges. The
analysis assumed uniform soil conditions, but incorporated effects of incoherence
and wave passage. Support-motion arrays for the time-history analysis were
obtained with the unconditioned simulation method, described in the previous
section. The study considered two recorded accelerograms as seeds in the simu-
lation of the support motions and two levels of incoherence. For each ground
motion random field, 20 ensembles of ground-motions arrays were generated. The
mean response spectra of the motions at all supports of a bridge were used as input
in the MSRS analysis.

As an example, Fig. 7 shows the time histories of three pier drifts (from different
bridges) for a particular ground-motion random field (20 realizations) together with
the corresponding MSRS estimates, the latter depicted by horizontal lines. Exam-
ining absolute values of the MSRS errors, the mean and standard deviation over all
pier drifts and ground-motion random fields considered were found equal to 4.6%
and 3.7% respectively. The maximum error observed was 12.3%, but in most cases,
the errors were smaller than 10%.

It is emphasized that the MSRS method is intended for use in conjunction with
smooth response spectra that represent broadband excitations and a smooth
coherency function. In the aforementioned analysis however, jagged response
spectra from relatively narrowband excitations were used. Furthermore, the smooth
coherency function used for evaluation of the correlation coefficients in the MSRS
analysis differs from the actual coherency values for pairs of simulated support
motions, which may exhibit fluctuations around the theoretical model. In view of
these differences, the reported MSRS errors are deemed remarkably small.

4.3 The Extended MSRS Rule

When high-frequency modes are truncated, an improved approximation of the
response can be obtained by accounting for the quasi-static contributions of the
truncated modes. If ωi is large relative to the frequencies of the input excitation,
the last term in the left-hand side of Eq. 15 is dominant and the ith normalized
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modal response to the kth support motion can be approximated by
ski tð Þ≈−ω− 2

i uk̈ðtÞ. Using this relation in Eq. 17 for modes i> n leads to:

z tð Þ≈ ∑
m

k=1
akuk tð Þ+ ∑

m

k=1
∑
n

i=1
bkiski tð Þ− ∑

N

i= n+1

bki
ω2
i
uk̈ðtÞ

� �
ð22Þ

The coefficients bki for i> n can be eliminated from Eq. 22 by employing the
identity (Konakli and Der Kiureghian 2011a):

Fig. 7 Response
time-histories and
corresponding MSRS
estimates
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− ∑
N

i=1

bki
ω2
i
= − qTxK

− 1Mrk ð23Þ

where K denotes the stiffness matrix of the structure associated with the uncon-
strained DOF. By rearranging terms, one obtains:

∑
N

i= n+1

bki
ω2
i
= qTxK

− 1Mrk − ∑
n

i=1

bki
ω2
i
= dk ð24Þ

Using the above identity, Eq. 22 can be written in a form that involves the
dynamic properties of only the first n modes:

z tð Þ≈ ∑
m

k=1
akuk tð Þ+ ∑

m

k=1
∑
n

i=1
bkiskiðtÞ− ∑

m

k=1
dkuk̈ tð Þ ð25Þ

Note that this improved expression of the response additionally involves the
support accelerations uk̈ tð Þ.

Based on Eq. 25 and principles of random vibration theory, the extended MSRS
rule that accounts for contributions of truncated modes is obtained as:

E max zðtÞj j½ �

≈ ∑
m

k =1
∑
m

l=1
akalρukuluk,maxul,max

�

+2 ∑
m

k=1
∑
m

l=1
∑
n

j=1
akbljρukslj uk,maxDlðωj, ζjÞ

+ ∑
m

k=1
∑
m

l=1
∑
n

i=1
∑
n

j=1
bkibljρskisljDkðωi, ζiÞDlðωj, ζjÞ

+ ∑
m

k=1
∑
m

l=1
dkdlρu ̈k ül uk̈,maxul̈,max − 2 ∑

m

k=1
∑
m

l=1
ρukül uk,maxul̈,max

− 2 ∑
m

k=1
∑
m

l=1
∑
n

i=1
bkidlρskiu ̈lDkðωi, ζiÞul̈,max

�1 2̸

ð26Þ

The extended MSRS rule adds the last three terms to the original formulation.
The first of these terms represents the static contribution of the truncated modes.
The second term arises from the covariances of the support displacements and
accelerations, while the last term arises from the covariances between the responses
of the included modes and the static responses of the truncated modes. These terms
involve the peak support accelerations and three sets of correlation coefficients. The
new coefficients ρüku ̈l , ρuku ̈l and ρskiu ̈l respectively describe: the correlation between
the ground accelerations at the kth and lth support DOF, the correlation between the
ground displacement at the kth support DOF and the ground acceleration at the lth
support DOF, and the correlation between the ith modal response to the excitation
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at the kth support DOF and the ground acceleration at the lth support DOF. The
accuracy of the MSRS coefficients ρukul , ρu ̈ku ̈l and ρukül (the last two appearing only
in the extended rule) was examined by Konakli (2013).

For an assessment of the improvement obtained with the extended rule, the
interested reader is referred to Konakli and Der Kiureghian (2011a).

4.4 Non-linear Response: The ‘Equal Displacement’ Rule

Non-linear response-history analysis (RHA) represents the most accurate method
for the evaluation of inelastic structural response to a specified set of support
motions. However, non-linear RHA faces two important constraints: (i) it is com-
putationally costly and (ii) by providing results that are particular to the selected
input time-histories, it has limited ability to characterize effects of uncertainties that
surround future ground motions. Although response-spectrum methods overcome
these limitations, they are restricted to linear response analysis. It is thus of interest
to investigate relations between non-linear responses and their linear counterparts.

Observations by Veletsos and Newmark (1960) on the responses of
elasto-plastic and the corresponding linear single-DOF systems gave rise to the
‘equal displacement’ rule. Under certain conditions, this rule allows estimation of
the maximum displacement response of inelastic structures from analysis of their
elastic counterparts. The ‘equal displacement’ rule is particularly useful in
displacement-based design procedures (Moehle 1992, Kowalsky 2002), which are
of growing interest in performance-based earthquake engineering. Therefore, sev-
eral studies have been devoted to assessing its accuracy and limitations for different
types of structures and ground motions. The applicability of the ‘equal displace-
ment’ rule for extended structures subjected to differential support motions was
investigated by Konakli and Der Kiureghian (2014); a brief description of the
analysis and main findings of this study is given next.

Konakli and Der Kiureghian (2014) compared responses from linear and non-
linear time-history analyses for idealized models of four actual bridges in California
with distinctly different configuration and dynamic properties. They performed
statistical analyses of the maximum pier drifts for ground-motion random fields
with different frequency contents and spatial variability characteristics. In particular,
the analysis considered two seed recorded accelerograms and four cases of spatial
variability:

• Case 1 represents uniform support excitations.
• Case 2 incorporates effects of incoherence and wave passage, but assumes

uniform soil conditions.
• Case 3 differs from case 2 in considering a higher level of incoherence.
• Case 4 differs from case 2 in assuming varying soil profiles.
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As ensemble of 20 support-motion arrays were simulated for each bridge model
and ground-motion random field. Based on the respective pier-drift responses from
linear and non-linear RHA, Konakli and Der Kiureghian (2014) analyzed the
statistics of two dimensionless response quantities: (i) the ductility factor μ, rep-
resenting the ratio of peak pier drift from non-linear RHA to the corresponding
yield drift, and (ii) the inelasticity factor Cμ, representing the ratio of peak
non-linear to peak linear drift. Graphs of inelasticity versus ductility factors for one
seed accelerogram are shown in Fig. 8, where graphs in the same row correspond to
a single bridge model, whereas graphs in the same column correspond to a certain
case of spatial variability.

Under uniform support motions (case 1) and for moderate levels of inelastic
behavior, the ‘equal displacement’ rule was found fairly accurate for cases when the
fundamental period of the bridge was beyond the acceleration-controlled range of
the response spectrum. For bridges with shorter fundamental periods, the rule was
found non-conservative for cases with mean ductility factors in the range from 3 to
4 and overly conservative for cases with mean ductility factors smaller than
approximately 2. Wave passage and incoherence (cases 2 and 3) reduced the mean
inelasticity factors, but the latter increased when the effect of differential site
response was additionally incorporated by locating piers on softer soils (case 4).
Effects of spatial variability on the pier-drift response were more pronounced for
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Fig. 8 Inelasticity versus ductility factors
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longer and stiffer bridges. In most cases, mild or moderate positive linear correla-
tions between inelasticity and ductility factors were observed, with the higher
correlations observed for bridges with fundamental periods shorter than the tran-
sition period between the acceleration- and velocity-controlled ranges of the
response spectrum.

5 Conclusions and Perspectives

This chapter provided an overview on methods for incorporating effects of
ground-motion spatial variability in seismic response assessment, based on con-
cepts of stochastic time-series analysis and random vibration theory. The examined
topics included the modeling of ground-motion spatial variability, the simulation of
spatially varying ground-motion arrays and the evaluation of structural response to
differential support motions. The modeling of the ground-motion spatial variability
relied on the coherency function; the different elements of this function as well as its
estimation based on recorded motions were explained. The presented method for
simulating spatially varying ground motions incorporates the incoherence,
wave-passage and site-response effects and preserves the temporal and spectral
non-stationarity of a specified reference accelerogram. In particular, the uncondi-
tioned simulation approach yields arrays with uniform variability that can be used
as input for the statistical analysis of structural response. The Multiple-Support
Response-Spectrum (MSRS) rule and its extended version were described as a
means for obtaining a statistical characterization of the peak linear structural
response. Finally, investigations into the relations between peak linear and
non-linear responses under effects of ground-motion spatial variability provided
insights into the validity of the ‘equal displacement’ rule in this case of excitation.

Inspired by the particular case of seismic response analysis to correlated support
motions, this chapter closes with the hope that methods of stochastic analysis will
be more widely employed in engineering practice, as a valuable tool for dealing
with the significant uncertainties facing engineering design. The importance of a
systemic perspective that properly accounts for the pertinent inter-dependencies and
correlations is also emphasized. The most modern research findings in the afore-
mentioned areas can be effectively transferred into engineering practice through the
continuing education of engineers, the interactions between research and practice
and the systematic research-informed updating of the engineering codes.
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Application of CQC Method to Seismic
Response Control with Viscoelastic
Dampers

Yutaka Nakamura

Abstract The complete quadratic combination (CQC) modal combination rule for
seismic analysis of structures is a great achievement of Professor Armen Der
Kiureghian. Among the other various uses of the CQC method, this chapter
introduces the application of the CQC method to seismic response control of
buildings with dampers to highlight the practical value of the CQC method. The
expanded CQC method can accurately estimate the maximum response of buildings
installed with response control damping devices and enables performance-based
placement design of dampers. In this chapter, the performance-based design pro-
cedure of a viscoelastic damper (VED) is introduced for finding the storywise
distribution of VEDs in a building such that each peak interstory drift coincides
with the corresponding prescribed value. The mechanical properties of the
employed VED’s dependence on amplitude and frequency of the excitation as well
as material temperature are taken into account and a mechanical nonlinear
four-element model that comprises two dashpot elements and two spring elements
is proposed for the VED. The developed performance-based design procedure
utilizes equivalent linearization of the VED and the expanded CQC method, which
involves modal analysis with complex eigenvalue analysis. Seismic response
analyses are carried out for high-rise building models with optimally placed VEDs,
with the results demonstrating the effectiveness of the expanded CQC method and
the validity of the proposed performance-based placement-design procedure.

1 Introduction

Various dampers and energy dissipation devices have been developed and are widely
used to reduce the earthquake response of buildings, such as the viscoelastic damper
(VED), metallic hysteretic damper, friction damper, and viscous fluid damper.
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VEDs were first used in building structures to reduce wind-induced vibrations
(Mahmoodi et al. 1987), and have subsequently been studied and used to reduce the
earthquake response of buildings (Soong and Dargush 1997; Cheng et al. 2008;
Takewaki 2009). As shown in Fig. 1, a typical VED consists of a VE material or a
high damping rubber that is bonded between an inner steel plate and an outer steel
plate and is subjected to shear deformation. The story-installation-type VED is
generally found in three configurations: brace type, wall type, and column type, as
shown in Fig. 2. The VED induces a viscous shear force in response to relative
interstory drift, causing energy dissipation, and hence, the VE material properties
govern the performance and characteristics of the VED.

Mechanical properties of the VED generally show a significant dependence on
the amplitude and frequency of the excitation and material temperature depending
on the employed VE material. For the use of VEDs in a building, one should
consider their nonlinear characteristics and dependence and study the necessary
story-wise placement of the dampers to meet the seismic design performance
objectives. Although quite a few previous studies have been carried out on the
optimum or effective placement of viscous or viscoelastic dampers, these have dealt
with the damper as an ideal mechanical model that comprises a linear dashpot
element with/without a linear spring element (Zhang and Soong 1992; Chang et al.
1992; Tsuji and Nakamura 1996; Gluck et al. 1996; Takewaki 1997, 2000; Ribakov
and Gluck 1999; Takewaki et al. 1999, 2013; Garcia 2001; Singh and Moreschi

Fig. 1 Principle of VED

Fig. 2 Configurations of the story-installation-type of VED
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2001, 2002; Uetani et al. 2003; Xu et al. 2003; Park et al. 2004; Liu et al. 2004;
Lavan and Levy 2005, 2006; Tan et al. 2005; Liu et al. 2005; Silvestri and
Trombetti 2007; Cimellaro 2007) and have treated the optimum placement of ideal
viscous or viscoelastic dampers installed in a building under seismic excitations.
The story-wise placement of supplemental dampers or damping coefficients was
found to meet the seismic design constraints or to optimize the values of the target
properties. The constraints are mostly imposed on the interstory drifts of a structure
subjected to a specified earthquake input, since the interstory drifts can be regarded
as the most important seismic design index. The mean peak interstory drifts of the
building installed with dampers subjected to the specified design displacement
response spectrum can be estimated using the expanded complete quadratic com-
bination (CQC) method, which entails modal analysis with complex eigenvalue
analysis (Igusa et al. 1984; Yang et al. 1990).

In addition to the interstory drift criteria, Takewaki (1997) and Takewaki et al.
(1999) minimized the sum of amplitudes of the transfer functions evaluated at the
undamped fundamental natural frequency of a structure. Lavan and Levy (2005)
chose energy-based damage indices based on the hysteretic energy dissipated by the
restoring force divided by its hysteretic energy at failure. Tan et al. (2005) and Liu
et al. (2005) considered an acceleration-based criterion in addition to the interstory
drift criteria. Silvestri and Trombetti (2007) studied various performance indices
such as the standard deviation of the roof displacement or the base shear, the
average of the standard deviations of the interstory drift angles, and the sum of the
standard deviations of the damper forces. Cimellaro (2007) minimized the sum of
the norm of the displacement, absolute acceleration, and base shear transfer func-
tion evaluated at the fundamental natural frequency.

Various sequential procedures have been proposed to find the optimum place-
ment of the supplemental dampers in a structure. The basic idea is that a controller
is optimally located if it is placed at a position where the displacement response of
the uncontrolled structure is the largest (Zhang and Soong 1992). To find the
optimal location, Gluck et al. (1996) used the solution for the linear quadratic
regulator problem, Singh and Moreschi (2001, 2002) employed a gradient-based
optimization approach and a genetic algorithm, and Xu et al. (2003) utilized the
simplex method. Takewaki (2009) explored the repetitive performance sensitivity
analysis, using which the supplemental damper is installed into the story with the
highest performance sensitivity.

We have previously developed a wall-type VED using a newly produced VE
material with low temperature dependence and proposed a mechanical model for
the VED using a nonlinear four-element (NLF) model that comprises two dashpot
elements and two spring elements (Nakamura and Kaneko 1998). The NLF model
can express the VED dependence on the amplitude and frequency of the excitation
and material temperature. In this chapter, after reviewing the developed VED and
the proposed NLF model, a placement-design procedure is proposed for the man-
ufactured wall-type VED such that each peak interstory drift is limited to the
specified value for a given design response spectrum (Nakamura and Hanzawa
2002; Nakamura et al. 2016). The proposed design procedure utilizes the equivalent
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linearization of the VED and the expanded CQC method in the peak response
estimation. The validity of the proposed design procedure is demonstrated by
design examples of high-rise building models.

2 Review of a Developed VED

The VED generally exhibits large temperature dependence (Chang et al. 1992;
Soong and Dargush 1997), which is considered to be a drawback and limits its
applicability. A new VED was developed by utilizing a newly produced VE
material with low temperature dependence. Based on a series of dynamic tests of
the VE material specimen, a mechanical model for the VED was proposed using an
NLF model that comprises two nonlinear dashpot elements and two nonlinear
spring elements. The validity of the proposed mechanical model of the VED was
verified through the dynamic loading tests of a 1/2-scale VED. In this section, the
proposed NLF model of the VED is reviewed and its test results are described.

2.1 Mechanical Characteristics of VE Material

The newly developed VE material is made of thermoplastic elastomer of the
olefin-styrene series. Table 1 shows the compounding ratios of the VE material.
A series of dynamic loading tests were carried out on a test specimen consisting of a
70 mm × 80 mm sheet of the VE material (thickness d = 5 mm, total shear area
AS = 5600 mm2) as shown in Fig. 3. The air temperature (Te) was 20 °C. Figure 4
shows hysteresis loops for an increasing sine wave and for an earthquake interstory
drift of the 8th floor of a hypothetical 15-story building (Appendix I).

From the measured hysteresis loop under sinusoidal loading, as shown in Fig. 5,
the equivalent shear stiffness, Keq, the equivalent damping coefficient, Ceq, and the
equivalent damping factor, heq, were obtained by

Keq =
Q
δmax

ð1aÞ

Ceq =
ΔW

π ω δ2max

ð1bÞ

Table 1 Compounding
ratios of the VE material

Elastomer Damping
material

Antioxidant

Weight
percentage (%)

42–52 42–52 4–8
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Viscoelastic
material

5
(unit: mm)

Fig. 3 Test specimen of VE material and the dynamic testing machine

-6

-4

-2

0

2

4

6

Fo
rc

e 
P[

kN
]

Shear deformation

for an increasing sine wave of 0.33 Hz,  
°Ca temperature of 20

δ (mm)

-6

-4

-2

0

2

4

6

-20 -10 0 10 20 -20 -10 0 10 20

Fo
rc

e 
P[

kN
]

Shear deformation

for an earthquake interstory drift 
of 8th floor of a 15-story building

δ (mm)

(a) (b)

Fig. 4 Resisting force characteristics of VE material

Fig. 5 Evaluation of
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of a hysteresis loop
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heq =
ωCeq

2Keq
ð1cÞ

where ω indicates the circular frequency of a sine wave.
Figure 6 shows the obtained values of Keq, Ceq and heq for the shear strain,

γmax = δmax d̸ð Þ, of the VE material at air temperature, Te, of 20 °C, where δmax

indicates the amplitude of the sinusoidal wave. Figure 6 indicates the amplitude and
frequency dependence of the VE material, and both Keq and Ceq decrease with
increasing γmax, while heq is almost constant at about 0.4 irrespective of the
amplitude and frequency of the input.

Figure 7 shows Keq and Ceq for Te = 0–40 °C where Keq and Ceq values are
normalized by the value at Te = 20 °C, respectively. This figure indicates that the
temperature dependence of Keq and Ceq can be well expressed by exp{−0.017
(Te – 20)}. The temperature dependence is much smaller than that for the other
viscoelastic materials for the VED that have been in practical use.

(a) (b)

(c)

Fig. 6 Amplitude- and frequency-dependency of mechanical characteristics of VE material
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2.2 NLF Model of VE Material

A mechanical model for the VE material was proposed by an NLF model
(Nakamura and Kaneko 1998) that comprises two nonlinear dashpot elements and
two nonlinear spring elements as shown in Fig. 8 and expressed by Eqs. (2a)–(2d).
The four-element model shown in Fig. 8a can express the frequency dependence of
the VE material, and the nonlinear characteristics of the four elements shown in
Fig. 8b, c can provide the amplitude dependence of the VE material.

The temperature dependence of the VE material is expressed by incorporating
the temperature-dependence function, Ft(Te), in each element as

C1 = 4.76 × 10− 1γ − 0.640 ×
As

d
×Ft Teð Þ ðN ⋅ s m̸mÞ ð2aÞ

C2 = 1.59 × 10− 2γ − 0.395 ×
As

d
×Ft Teð Þ ðN ⋅ s m̸mÞ ð2bÞ
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Fig. 7 Temperature-dependency of the equivalent stiffness and damping coefficient of test VE
material

(a) Four-element
         model

(b) Nonlinearity of K1, C1 and C2 (c) Nonlinearity of K2
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Fig. 8 NLF model (a Four-element model; b Nonlinearity of K1, C1 and C2; c Nonlinearity of K2)
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K1 = 2.83 × 10− 1γ − 0.715 ×
As

d
×Ft Teð Þ ðN m̸mÞ ð2cÞ

K2 = 1.57 ×
0.1 + 0.01ðγ − 0.1Þ

γ
×
As

d
×Ft Teð Þ ðN m̸mÞ ð2dÞ

Ft Teð Þ= exp − 0.017 Te − 20ð Þf g ð2eÞ

where As and d indicates the area and the thickness of the VE material, respectively.
The coefficients of the four elements are first determined to express the obtained
frequency dependence for a fixed shear strain of γ = 200% by trial-and-error, and
then nonlinear characteristics with respect to γ are incorporated to express the
obtained amplitude dependence (Nakamura and Kaneko 1998).

The equivalent shear stiffness, Keq, and the equivalent damping coefficient, Ceq,
of the proposed NLF model are expressed as follows.

Keq ω, γ;AS, d, Teð Þ= ω2C2
1

K2
1 +ω2C2

1
K1 +K2 ðN m̸mÞ ð3aÞ

Ceq ω, γ;AS, d,Teð Þ= K2
1

K2
1 +ω2C2

1
C1 +C2 +CK2 ðN ⋅ s m̸mÞ ð3bÞ

where

CK2 =
ΔW

π ⋅ ω ⋅ γdð Þ2 =
0.622 γ − 0.1ð Þ

π ⋅ ω ⋅ γ2
×
As

d
×Ft Teð Þ ðN ⋅ s m̸mÞ ð4Þ

and ω indicates the circular frequency of the excitation. Figure 9 shows Keq and Ceq

obtained from the experimental results of the test VE material and those of the

(a) (b)

Fig. 9 Equivalent stiffness and damping coefficient of experimental results of VE material and
those of proposed NLF model
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proposed NLF model. Figure 9 indicates that the proposed NLF model can express
the dynamic characteristics of the VE material with good accuracy.

2.3 Dynamic Loading Tests of VED

Using a 1/2-scale model of the wall-type VED, dynamic loading tests were carried
out to verify that the resisting force characteristics of the scale VED can be accu-
rately simulated by the proposed NLF model. Figure 10 shows a schematic diagram
of a 1/2-scale wall-type VED and the setup of a dynamic loading test. Two VE
materials with dimensions of 600 mm × 600 mm and thickness of 10 mm were
held between an inner steel plate and an outer steel plate by vulcanizing bonding.
The total area of the VE material in the VED, As, was 720 × 103 mm2.

Figure 11 shows an experimental hysteresis loop of the 1/2-scale model VED
and that of the test VE material specimen (As = 5.6 × 103 mm2, d = 5 mm) in
Fig. 3 for an earthquake interstory drift of the 8th floor of a hypothetical 15-story
building (Appendix I). The vertical axis of Fig. 11 represents the shear stress, τ,
which is obtained from the resisting shear force, Q, divided by As. The horizontal
axis of Fig. 11 represents the shear strain, γ, which is obtained from the applied
time-history deformation, δ, divided by the thickness of the VE material, d. The two
hysteresis loops in Fig. 11 are very similar, implying that the resisting force of the
VE material is proportional to the area of the VE material.

Figure 12 shows an experimental hysteresis loop of the 1/2-scale model VED
and a simulation result by the NLF model for an earthquake interstory drift of the
24th floor of a hypothetical 24-story building (Appendix I). The simulation result in
Fig. 12 is computed by the NLF model (Fig. 8) and Eqs. (2a)–(2e) which need the

Fig. 10 Schematic diagram of a VED and setup of dynamic loading test
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time-history shear strain, γ, but not the value of ω. The simulations were in good
agreement with the experimental result, implying that the mechanical characteristic
of the VED can be accurately estimated by the proposed NLF model.

Fig. 11 Resisting force
characteristics of test VE
material and VED

Fig. 12 Resisting force
characteristics of mechanical
model and experimental
results of VED

238 Y. Nakamura



3 Maximum Earthquake Response of a Building
with VEDs

The seismic design constraints are generally imposed on the peak responses of a
structure subjected to a specified earthquake input. The computational method is
proposed here for estimating the peak interstory drifts of a building where VEDs
with mechanical characteristics given by the NLF model are used. The mean peak
interstory drifts can be estimated by using the equivalent linearization of the VEDs
and the expanded CQC method for the specified design displacement response
spectrum.

3.1 Equivalent Linearization of VED

The NLF model of the VED can be converted into a linear Voigt model comprising
a linear spring and a linear dashpot connected in parallel by utilizing the equivalent
linearization. Substituting the maximum shear strain of the VED, γmax, for γ in
Eqs. (2a)–(2e) and (4), and the fundamental natural period of the building, T1, for ω
in Eq. (4) as ω=2π T̸1, the equivalent shear stiffness, KD, and the equivalent
damping coefficient, CD, of the converted Voight model shown in Fig. 13 are given
by Eqs. (3a) and (3b), respectively for a specified set As, d, Tef g.

The maximum shear strain γmax of the VED installed in a story can be evaluated
from the interstory drift constraint in a performance-based design. When the peak
interstory drift angle is specified as β for the story of a floor height Ls and the
mounting component for the VED can be regarded as stiff enough, γmax is given by

γmax =
Ls ⋅ β
d

ð5Þ

The fundamental natural period, T1, of the building installed with the VED can
be obtained through the modal analysis explained in the following section. The
equivalent linearization of the VED considering the stiffness of the mounting
component is described in Appendix II.

Fig. 13 Equivalent
linearization of NLF model
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3.2 Modal Analysis by the Expanded CQC Method

Consider a multistory shear building in which the VEDs are installed between the
floors. The mean peak response of the building to an earthquake can be estimated
using modal analysis. The equivalent shear stiffness, kDj, and the equivalent
damping coefficient, cDj, of the Voight model of the VED installed at the j-th floor
are added to the story shear stiffness, kSj, and the story damping coefficient, cSj. The
equations of motion of an f-story shear building can then be written as follows:

MSx ̈+ ðCS +CDÞx ̇+ ðKS +KDÞx= −MS1 z ̈ ð6Þ

where x= fx1 . . . xf
�T and 1= 1 . . . 1f gT and z ̈ denote the horizontal displace-

ments of the floors and the input earthquake acceleration, respectively, MS denotes
the diagonal mass matrix of the structure, CS and CD denote the tri-diagonal
damping matrices for the structure and for the installed VEDs, respectively, and KS

and KD denote the tri-diagonal stiffness matrices for the structure and for the
installed VEDs, respectively. The damping matrix, CS + CD, in Eq. (6) represents
non-proportional damping, and the eigenvalue problem of Eq. (6) is given using
Foss’s method (1958) as

λA+Bð ÞX =0

A=
0 MS

MS CS +CD

� �
, B=

−MS 0
0 KS +KD

� �
, X =

λu
u

� �
ð7Þ

Equation (7) gives f pairs of complex conjugate eigenvalues λf g, and their
corresponding eigenvectors uf g for damped vibration as listed below.

λ= λð1Þ⋯λðjÞ = λðjÞR + iλðjÞI
� �

. . . λðf Þ; λðf + 1Þ⋯λðf + jÞ = λðf + jÞ
R − iλðf + jÞ

I

� �
. . . λð2f Þ

n o
ð8Þ

where λðjÞ = λðjÞR + iλðjÞI
� �

and λðf + jÞ = λðf + jÞ
R − iλðf + jÞ

I

� �
j=1, 2, . . . fð Þ are a pair of

complex conjugate eigenvalues. The natural circular frequency, ωj, and the
damping factor, hj, of the j-th mode are given by

ωj = λðjÞ
		 		= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðjÞ
2

R + λðjÞ
2

I

q
ð9aÞ

hj = −
λðjÞR
ωj

= −
λðjÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðjÞ
2

R + λðjÞ
2

I

q ð9bÞ
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The mean peak interstory drifts, δj
� �

, of the building subjected to the specified
design displacement response spectrum SD (ω; h) can be estimated using the
expanded CQC method (Igusa, Der Kiureghian and Sackman 1984) as follows:

δj = ∑
N

r=1
∑
N

s=1
SD ωr; hrð Þ ⋅ SD ωs; hsð Þ ⋅ ρ r, sð Þ

RR aðrÞj aðsÞj +2ρ r, sð Þ
RI aðrÞj bðsÞj + ρ r, sð Þ

II bðrÞj bðsÞj

� �� �1 2̸

ð10aÞ

aðrÞj =Re νðrÞ uðrÞ
j

− uðrÞ
j− 1

� �h i
ð10bÞ

bðrÞj = Im νðrÞ uðrÞ
j

− uðrÞ
j− 1

� �h i
ð10cÞ

νðrÞ =2Im λðrÞ
h i XðrÞTAP

XðrÞTAXðrÞ i ð10dÞ

P=
1
0

� 
ð10eÞ

where Re[ ] and Im[ ] denote the real and imaginary parts of a complex number,

respectively, and ρ r, sð Þ
RR , ρ r, sð Þ

RI , and ρ r, sð Þ
II are the modal cross-correlation coefficients

given by Yang et al. (1990) as follows:

ρ r, sð Þ
RR =

8 hr + hspðs, rÞ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrhspðr, sÞ
p

pðr, sÞ + pðs, rÞ +2hrhsð Þ2 − 4 1− h2r
� �

1− h2S
� � ð11aÞ

ρ r, sð Þ
RI =

4 pðr, sÞ − pðs, rÞ +2hrhs +2pðs, rÞh2S
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrhspðr, sÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ h2S
� �q

pðr, sÞ + pðs, rÞ +2hrhsð Þ2 − 4 1− h2r
� �

1− h2S
� �n o ð11bÞ

ρ r, sð Þ
II =

4 pðr, sÞ + pðs, rÞ +2hrhs
� �

hr + hspðs, rÞ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrhspðr, sÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ h2r
� �

1+ h2S
� �q

pðr, sÞ + pðs, rÞ +2hrhsð Þ2 − 4 1− h2r
� �

1− h2S
� �n o ð11cÞ

where pðr, sÞ =ωr ω̸s.
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4 Performance-Based Placement-Design Procedure
of VED

A placement-design procedure for the VEDs is proposed here such that each peak
interstory drift angle βj

� �
of an f-story shear building with a specified set {MS, CS,

KS} subjected to a design earthquake SD (ω; h) would coincide with the prescribed
value βj

� � ðj = 1, 2, . . . , f Þ. Figure 14 presents a design process for finding the
distribution of the VEDs’ Aj

� � ðj = 1, 2, . . . , f Þ that are required to limit the
interstory drift angles to the specified target values. Here, Aj

� �
means the total area

of the VE material in the dampers at the j-th floor, while the thickness (d) and the
temperature (Te) of the VE material are previously defined.

In the design process shown in Fig. 14, Aj is adjusted by the ratio of the esti-
mated peak interstory drift angle, βj, to the target value, βj, and α in the equation in
Step [8] is the control parameter, which is specified as 0 < α≤ 1.

As Aj
� �

values are adjusted in the design process, the T1 value of the building
with VEDs varies. Hence, the estimation in Step [4] of the process should always be

Fig. 14 Design process for placement design of VED for specified peak interstory drifts
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based on T1, which is obtained by the previous eigenvalue analysis. The proposed
design procedure utilizes complex eigenvalue analysis, and therefore, can provide
the changes in the equivalent natural periods and the equivalent damping factors of
the building with VEDs.

5 Design Examples

Below, design examples of the performance-based placements of wall-type VEDs
for three high-rise building models such that each peak interstory drift angle is
reduced to the prescribed value, are shown. Time history response analyses are
carried out for the buildings installed with the necessary number of VEDs to
demonstrate the validity of the proposed design procedure.
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Fig. 15 Mass and story stiffness of 20, 30, and 40-story shear buildings

Table 2 Fundamental natural period and story height of 20, 30, and 40-story shear buildings

Fundamental natural period (s) Story height (cm)

20-story shear building 2.06 398
30-story shear building 2.96 410
40-story shear building 4.00 378
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5.1 High-Rise Building Models with Optimally Placed VED

Consider a 20, 30, and 40-story shear buildings with mass and story stiffness
properties as shown in Fig. 15, which are based on actual high-rise buildings.

Fig. 16 Wall-type VED
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The fundamental natural periods of the buildings without dampers, T1, and their
story heights are shown in Table 2. The damping ratio in the first mode, h1, is
assumed to be 2%, and those in the higher modes are assumed to be proportional to
the frequency.

The wall-type VED shown in Fig. 16 is employed to control the peak interstory
drifts of the buildings. The VE material is 5 mm in thickness and the total area of
the VE material of one wall-type VED is 1.6128 m2. The ambient temperature is
assumed to be 20 °C. The story-wise distributions of Aj

� �
are now determined such

that the peak interstory drift angle for all stories is βj ≡ 1 1̸50 for the Level 2 design
response spectrum specified by the Japan Building Center (Fig. 17). The control
parameter α is 0.3 in the design process.

The extracted progress of story-wise distribution of the area of the VE material
in the 20-story building is shown in Fig. 18a, together with the estimated peak
interstory drift angles in Fig. 18b, which vary according to the story-wise

(a) Iterative design process of story-wise distribution of VE material area 

(b) Variation in peak interstory drift angles for the upper distribution of VE material 
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Fig. 18 Extracted progress of story-wise distribution of VE material area and varying peak
interstory drift angles in 20-story building
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Fig. 19 Story-wise distribution of VE material area and necessary number of VEDs in 20-, 30-,
and 40-story buildings designed for maximum story drift angle of 1/150

Table 3 Fundamental natural period and damping factor of buildings with and without VED

Fundamental natural period (s) Damping ratio in the first mode
(%)

Without VED With VED Without VED With VED

20-story building 2.06 1.95 2.0 4.70
30-story building 2.96 2.89 3.32
40-story building 4.00 3.83 4.31
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distribution of the area of the VE material. As shown on the left-hand side of
Fig. 18a, the story-wise distribution of the VE material is first assumed to be
uniform for all floors, and the drift angles are estimated by the expanded CQC
method, as shown on the left-hand side of Fig. 18b. The area of the VE material at
each floor is adjusted by the ratio of the estimated drift angle to the target value. For
the modified VE material distribution, the drift angles are repeatedly estimated and
compared to the target value with the modification repeated until the estimated drift
angles are sufficiently close to the target value, as shown on the right-hand side of
Fig. 18a, b. The variations in T1 and h1 computed by the complex eigenvalue
analyses during the iterative modification are also shown in Fig. 18a.

Figure 19 shows the obtained story-wise distribution of the area of the VE
material and the necessary number of VED in the 20-, 30-, and 40-story buildings
designed for a maximum story drift angle of 1/150. The necessary number of VEDs
at each story was obtained by dividing the obtained area of the VE material by
1.6128 m2 (= the area of the VE material of the employed wall-type VED in
Fig. 16) and rounding off to a whole number.

The proposed placement-design procedure can evaluate the extent of changes in
T1 and h1 of the building installed with the necessary VEDs by the complex
eigenvalue analyses. Table 3 shows T1 and h1 of the building with and without the
VEDs. The required VEDs shorten the fundamental T1 slightly and increase h1
considerably due to their additional stiffness and damping coefficient. These
changes in T1 and h1 can provide important information about the dynamic char-
acteristics of the building.
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5.2 Verification by Time-History Response Analyses

To demonstrate the validity of the proposed design procedure, the buildings
installed with the necessary number of wall-type VEDs (as shown in Fig. 19) were
subjected to 10 synthetic earthquakes generated to be compatible with the design
response spectrum (Fig. 17). Figure 20 shows acceleration spectra of the 10 syn-
thetic earthquakes with the target spectra. Time-history analyses were conducted
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using the original mechanical model of the VED, i.e., the NLF model given by
Eqs. (2a)–(2e).

Figure 21 shows the story-wise distribution of the mean peak interstory drift
angles obtained by time-history analyses of the buildings with and without VEDs.
With the exception of the lower and upper floors, where there is no need to install a
VED, the mean peak interstory drift angles are found to be controlled to the
specified value of 1/150 with enough accuracy.

The mean peak interstory drift angles of the 30-story building in Fig. 21b exceed
the target value of 1/150 by about 10%. The errors in Fig. 21 are considered to be
caused by the following two disparities between the proposed design procedure and
the applied time-history analyses: The design procedure uses the converted Voigt
model of the VED, while the time-history analyses use the original NLF model of
the VED. The design procedure uses the modal analysis with the specified design
response spectrum, while the time-history analyses use the generated synthetic
earthquake waves. Considering the uncertainty and dispersion of the earthquake
input, this amount of error can be regarded as acceptable, and the target peak
responses of a structure can be specified for an appropriate safety margin.

6 Conclusions

Using the expanded CQC method for non-classically damped structures, a
performance-based placement-design procedure is developed for finding the
story-wise distribution of the manufactured wall-type VED such that each peak
interstory drift would be limited to the specified value for a given design response
spectrum.

The wall-type VED is installed between the floors in a building, and induces a
viscous shear force in response to the relative interstory drift, causing energy dis-
sipation. The wall-type VED studied in this chapter utilizes a newly developed VE
material with low temperature dependence. The wall-type VED shown in Fig. 16
has been applied to a few tall buildings in Japan as a practical damper. A me-
chanical model for the VED can be expressed by an NLF model that comprises two
nonlinear dashpot elements and two nonlinear spring elements. The NLF model can
express amplitude- and frequency-dependence properties of the VED. The validity
of the proposed NLF model of the VED is verified through the dynamic loading
tests of a 1/2-scale wall-type VED.

The expanded CQC method is utilized to estimate the peak interstory drifts of a
building with installed VEDs subjected to a specified given design response
spectrum. In the modal analysis, the NLF model of the VED installed at each story
is converted into an equivalent linear Voigt model, which is determined by the
prescribed peak interstory drift and the fundamental natural period of the structure.

An algorithm for the placement design of the VED is proposed such that the
peak interstory drifts would be limited to a specified value. In the proposed
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sequential design process, the area of the VE material in each story is adjusted by
the ratio of the estimated peak interstory drift angle to the target value. The nec-
essary number of VEDs at each story is obtained by dividing the obtained area of
the VE material by the area of the VE material of the employed single wall-type
VED and rounding off the result to a whole number.

Design examples of the performance-based placements of the wall-type VEDs
are shown for three high-rise building models. Time-history response analyses are
carried out for buildings installed with the necessary number of VEDs subjected to
the design response spectrum-compatible synthetic earthquakes. The results
demonstrate the effectiveness and validity of the proposed performance-based
placement-design procedure.

The developed design procedure utilizes the equivalent linearization of the VED
and the expanded CQC method. Therefore, the procedure can be applied not only to
the VED but also to other dampers such as metallic hysteretic dampers and viscous
fluid dampers, which can be converted into a linear Voigt model framework.
Another advantage of the procedure is that the variations in the fundamental natural
period and the damping ratio of the structure due to the installed dampers can be
evaluated by complex eigenvalue analysis, which provides important information
on the dynamic characteristics of the structure.
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Appendix I

Earthquake Interstory Drifts of Hypothetical 15- and 24-story
Buildings

The dynamic loading tests of the VE material and the VED make use of simulated
earthquake interstory drifts of hypothetical 15- and 24-story buildings subjected to
Hachinohe 1968 EW earthquake or El Centro 1940 NS earthquake. The funda-
mental natural periods of the 15- and 24-story buildings are assumed to be 2 s and
3 s, respectively. Fig. 22 shows the waveforms of the earthquake interstory drifts in
Figs. 4b, 11 and 12.
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Appendix II

Voigt Model of VED Considering the Stiffness of the Mount-
ing Component

For consideration of the mounting component’s stiffness, KM the equivalent Voigt
model including the mounting component can be constructed. As shown in Fig. 23,
the sum of the maximum shear deformation of the VED, δD = γmax ⋅ d, and the
maximum deformation of the mounting component, δM, is equal to the specified
peak interstory drift, δ̄=LS ⋅ β.

The following equation holds for γmax, δ̄, KM, and Keq ω, γmaxð Þ and Ceq ω, γmaxð Þ
of the VED given by Eqs. (3a) and (3b) for a specified set As, d, Tef g:

γmax ⋅ d= δ ̄ ⋅ 1+
Keq ω, γmaxð Þ

KM
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While Eq. (12) cannot be analytically solved in terms of γmax, the value of γmax
can be estimated through iterative computations by substituting LS ⋅ β d̸ as an initial
value of γmax on the right-hand side of Eq. (12). Once a converged value of γmax is
obtained, KD and CD of the equivalent Voigt model considering KM are obtained
according to

KD =
Keq ω, γmaxð Þ 1+ Keq ω, γmaxð Þ

KM

� �
+ω2 Ceq ω, γmaxð Þ2

KM

1+ Keq ω, γmaxð Þ
KM

� �2
+ω2 Ceq ω, γmaxð Þ

KM

� �2 ð13Þ

CD =
Ceq ω, γmaxð Þ

1+ Keq ω, γmaxð Þ
KM

� �2
+ω2 Ceq ω, γmaxð Þ

KM

� �2 ð14Þ

where the fundamental natural circular frequency of a building, ω=2π T̸1, is
assigned to ω in Eqs. (13) and (14) in the same way as in Sect. 3.1.
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Optimal Design of Reinforced Concrete
Section Under Combined Dynamic Action

Michel Kahan

Abstract Wind or earthquake dynamic actions produce combined efforts on
structures (axial force, bending moment about one or two axes, …) whose maxi-
mum values within a member section can often be represented by an elliptical
envelope. The present chapter describes a technique to optimize reinforced concrete
sections subjected to this type of dynamic load by adjusting quantities of steel
and/or concrete so that the interaction curve characterizing the resistance of the
section becomes tangent to the envelope of the maximum combined forces. The
method relies on a geometrical transformation from the original space of forces in
which the envelope is an ellipse to a so-called “standard normal space” where it
becomes the unit circle. In this latter space, the safety margin of the section has a
very simple geometric expression and is measurable with well-known tools of
reliability analysis. The section parameters (steel and concrete) can then be adjusted
in a very efficient way.

1 Foreword

Think of how many people have truly influenced your life. There should not be
many. For me, Armen has been one of these very few. An extremely knowledgeable
person, a remarkable teacher—the kind who makes you feel clever, and above all, a
truly good man, and I hope a friend.

I only studied for six months with him at UC Berkeley, but that changed the
course of my PhD, and my vision of engineering. Less certainty, more questioning,
and a commitment to turn complex issues into elegant solutions.

I have left the field of research for civil engineering consultancy services some
years ago, but I have kept these fundamentals. This chapter, which I first wrote as a
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paper in French (Kahan 2002), is dedicated to Armen: it includes reliability tech-
niques and algorithms that Armen taught me, and the core of the chapter is a nice
geometrical transformation that turns a complex issue into a relatively simple one, a
way of solving problems which Armen might like.

2 Scope

Recent developments in structural analysis include time step analysis of complex
structures whose materials behave in a non-linear way or whose large displacements
require second order analysis. These sophisticated numerical tools are commonly
used to check the behavior of structures subjected to dynamic forces under seismic
or wind actions. Thus, given temporal data of the dynamic load (accelerograms for
an earthquake or fields of instantaneous wind speeds), it is possible to compute
(within model errors) elastic and inelastic strains and check whether or not they
remain within acceptable limits that are either determined experimentally or given
by standards and codes.

Despite the improvement of numerical analysis, the design techniques of the
same structures remain voluntarily simple, with the clear objective to cover, in a
robust way, a large range of uncertain dynamic actions.

Thus, most engineers will deal mainly with forces instead of strains (at least
within the framework of force based design) and will check that the combined
dynamic forces remain in a safe domain. Namely, if the section is well designed, the
vector of combined forces (axial force N and bending moments My, Mz) is a
function of time which must remain within the boundaries formed by an interaction
curve or surface which represents the resistance capacity of the section. Checking
forces this way is equivalent to checking strains only if there is a one-to-one
relationship between strains and stresses, such as with linear elastic materials. In all
other cases (most of practical cases in fact) force-based design has a more con-
ventional and regulatory purpose than a truly physical meaning.

Most often, an elliptical envelope can be drawn around maximum credible
combined forces. It can be thought of as a curve or a surface of equal probability of
occurrence of the force vector {N, My, Mz} or as a curve or a surface that the force
vector will out-cross very rarely, with a given probability.

In the following, we assume that the envelope of section forces is elliptical and
we will state that a reinforced concrete section is designed in an optimal way if the
interaction curve, representing the resistance capacity is completely outside and
possibly tangent to the above action envelope.

It is usually a difficult issue to check that every point of the solicitation ellipse
lies within the safe domain of the interaction (resistance) curve. In the following, we
will review how this is dealt with in practical engineering life, using Leblond’s
approach (Leblond 1980) where the ellipse is approximated by a polygonal
envelope and each corner of the polygon is checked to be within the safe domain.
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The core of the original method presented here lies in a geometrical transfor-
mation from the original space of section forces {N, My, Mz} to a so-called “s-
tandard normal space” in which the safety margin of the section can be measured
very simply as the distance of the transformed interaction curve to the origin.

In a first stage, we briefly review a numerical method for the analysis of rein-
forced concrete sections. We then define the limit states, first in terms of local strains,
then it terms of combined forces. There can be several limit states corresponding to
strain limits in steel or in concrete. The maximum section forces are described, in the
original space, by an ellipse in the presented case of a single axis bending moment
combined with axial force (or by an ellipsoid in higher dimensions).

We then operate the transformation to the “standard normal space” in which the
envelope of forces becomes the unit circle centered about the origin. Optimal design
of the section will consist in adjusting dimensional parameters, such as steel and
concrete quantities, so that all limit states curves lie outside of the unit circle and, at
best, are tangent to it. The measure of the safety margin and the optimization
process call on numerical tools well known in reliability analysis.

3 Reinforced Concrete Section Analysis

The optimization process relies on a numerical analysis of reinforced concrete
sections. We describe briefly the main steps of a technique that can be used, with
emphasis on the elements that are required for the optimization algorithm to follow.
The fundamental numerical constraint is that the relationship between sectional
strains and forces should be differentiable and its inverse should exist and be
differentiable as well.

3.1 Assumptions

Stresses and strains are counted positive when in traction and elongation. Sign
conventions for bending moments and axial forces are reported on Fig. 1. Axial
forces are counted positive when in traction, a positive bending moment My will
compress “lower” fibers and a positive bending moment Mz will compress “right
hand side” fibers.

With these sign conventions, the vector of reduced forces can be expressed in
terms of stress distribution as:

T=
N=

RR
σðy, zÞ dy dz

My =
RR
z− zGð Þ σðy, zÞ dy dz

Mz = −
RR
y− yGð Þ σðy, zÞ dy dz

8<
: ð1Þ

Equation 1: vector of reduced forces
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Assuming an Euler-Bernoulli beam model, plane sections remain plane, per-
pendicular to the mean fiber and isometric. Longitudinal strain of the section fibers
can be expressed in terms of the center of gravity longitudinal strain and in terms of
curvatures Cy and Cz (cf. Fig. 2) as:

εx y, zð Þ= εG +Cy ⋅ z− zGð Þ−Cz ⋅ y− yGð Þ ð2Þ

Equation 2: longitudinal strain distribution
With these assumptions, the vector χT = εG CY CZf g constitutes the dis-

tributor of longitudinal strains in the section.

3.2 Discretization

To carry out numerical computation, the continuous material is divided in longi-
tudinal fibers of finite cross sections. Longitudinal stress across each of these fibers

Mx 

My 

N

Mz

z

x

y

Fig. 1 Sign conventions for bending moments and axial force

Cz

Cy 

Fig. 2 Strain cinematic

258 M. Kahan



is assumed to be constant and equal to the longitudinal stress at the center of mass
of the fiber. Equation 1 then becomes:

T=

N = ∑
fibers

σðys, zsÞ dS
My = ∑

fibers
zs − zGð Þ σðys, zsÞ dS

Mz = − ∑
fibers

ys − yGð Þ σðys, zsÞ dS

8>>><
>>>:

ð3Þ

Equation 3: vector of reduced forces (discretized version)
In these formulae, (ys, zs) and dS are respectively the coordinates of the center of

mass and the cross section of the current fiber.

3.3 Constitutive Relations of Materials

The constitutive models relate the strain calculated at the center of mass of the fiber
to the stress assumed uniform over the fiber cross section.

For simplicity, we also assume that the stress is a function of the present strain
only, independently of the stress-strain history.

In the following, an elastoplastic behavior is assumed for steel, with a slight
hardening beyond the yield point (see Fig. 3) which is useful to ensure numerical
stability of the strain computation algorithm.

In other words, given the elastic strain εel = fe
γs Es

(divided, when appropriate, by

the partial safety factor γs), the constitutive relations are:

s s

e
el E

f
γ

=ε

Fig. 3 Elastoplastic relation with hardening for steel fibers
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if ε< − εel σs = − fe
γs
+ ER εs + εelð Þ ∂σs

∂εs = ER

if − εel < ε< εel σs = Es εs ∂σs
∂εs = Es

if ε> εel σs = fe
γs
+ ER εs − εelð Þ ∂σs

∂εs = ER

ð4Þ

Equation 4: constitutive relations for steel
As far as concrete is concerned, we assumed a parabolic-rectangular stress-strain

relationship, widely used in design codes. However we introduced a cracked section
elastic modulus Ec, cracked and a creep modulus Ec, creep (see Fig. 4) so as to ensure a
better stability of numerical algorithms.

With fcu =
0.85 fcj
θ γb

the conventional stress limit for concrete, εlc = − 0, 002 the

strain limit of the parabolic diagram, Eb = 11000
ffiffiffiffiffi
fcj3

p
the conventional elastic

modulus for concrete (used solely to define residual modulus for creep Ec, creep and
cracking Ec, cracked made equal to 1/100th of this value, for example) the constitutive
relations for concrete fibers are:

if εc < εlc σc = − fcu +Ec, creep εc − εlcð Þ ∂σc
∂εc = Ec, creep

if εlc < εc < 0 σc = − fcu 1− 1− εc
εlc

� �2
� �

∂σc
∂εc = − 2 fcu

εlc 1− εc
εlc

� �

if εc > 0 σc = Ec, crackedεc ∂σc
∂εc = Ec, cracked

ð5Þ

Equation 5: constitutive relations for concrete fibers

Fig. 4 Constitutive relations for concrete fibers
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4 Relations Between Distributor of Longitudinal Strains
and the Vector of Reduced Forces

With the previous definitions of the section forces (Eq. 3) and of the distributor of
longitudinal strains (Eq. 2), relations of the following type can be established which
make use of the constitutive relations for steel and concrete (Eqs. 4 and 5):

T εG, Cy, Cz
� �

=

N= ∑
fibers

σ ε εG, Cy, Cz
� �

, material
� �

dS

My = ∑
fibers

zs − zGð Þ σ ε εG, Cy, Cz
� �

, material
� �

dS

Mz = − ∑
fibers

ys − yGð Þ σ ε εG, Cy, Cz
� �

, material
� �

dS

8>>><
>>>:

ð6Þ

Equation 6: strain-forces relations
Provided the constitutive relations are differentiable, the derivative of the force

vector with respect to each strain distributor parameter can be computed:

Δ χð Þ= dT
dχ

=

∂N
∂εG

∂N
∂Cy

∂N
∂Cz

∂My

∂εG
∂My

∂Cy

∂N
∂Cz

∂Mz

∂εG
∂Mz

∂Cy

∂Mz

∂Cz

2
66666664

3
77777775

ð7Þ

Equation 7: derivative of the force vector with respect to each strain distributor
parameter

Conversely, the above relations do not explicitly yield the distributor of strains
as a function of external forces (TT

ext = Next,My, ext,Mz, ext
	 


). For that purpose, it is
convenient to use a research algorithm, for example of the Newton-Raphson type,
in which an arbitrary initial distributor of strains is chosen χ0 and a series of
distributors is computed in the following way:

χn+1 =
εn+ 1
G

Cn+1
y

Cn+1
z

8<
:

9=
;= χn + Δ χnð Þ½ �− 1

Next −N χnð Þ
My, ext −My χnð Þ
Mz, ext −Mz χnð Þ

8<
:

9=
; ð8Þ

Equation 8: series of strain distributors
This series converges provided the determinant of the derivative of the force

vector with respect to the strain distributor (Eq. 7) does not come close to zero,
which explains the hardening chosen for post-yield behavior.

As an example, Fig. 5 shows the result of the research algorithm for a hollow
core rectangular pier of exterior dimensions 5 m × 8 m, 40 cm wall thickness
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reinforced with 16 mm diameter bars placed every 20 cm on each face (inside and
outside) with 3 cm concrete cover. For external forces defined by:

N = −80 MN My = 150 MN.m Mz = 150 MN.m

The maximum compression stress in concrete is 26.2 MPa (shortening of 0.20%)
and the maximum tensile stress in steel 288 MPa (elongation of 0.14%).

This way a bijective relation can be established N My Mz
	 
T =

T εG Cy Cz
	 
T

� �
. The differentiable properties of this relation will turn out to

be particularly interesting in the following optimization of section parameters.

Neutral axis

I = 82.6 m4

I = 38.8 m4Fig. 5 Example of a pier
cross-section

0,35%

h

3/
7h

B

C

0 0,2%

A

1%
As

h

d

Fig. 6 Strains conventional limit states
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5 Limit States

Reinforced concrete codes usually set conventional limits to compression and
tensile strains of various materials. For example, tensile strain for steel is limited to
1% (limit state A), compressive strain for concrete to 0.35% (limit state B) and a
uniform compression of the section cannot shorten concrete fibers beyond a strain
of 0.2% (limit state C). These constraints are summarized in the following diagram
for a plane bending moment combined with axial force:

For simplicity of graphical representation, the following discussion will be
restricted to the optimization of a reinforced concrete section subjected to a plane
bending moment combined with an axial force. The method however extends to
loads of more than two components.

In the particular case considered, the three limit states can be characterized by
the following functions of the distributor of strains whose components are the strain
at the center of mass εG and the curvature Cy. A positive sign of one the three
functions indicates that the corresponding limit state has not been reached.

Limit state A
(maximum
tensile strain
of steel)

gA εG, Cy
� �

=0.01− εG −Cy zA − zGð Þ
where zA and zG are the ordinates of the
most tensed steel fiber and of the center
of mass of the section

gA εG, Cy
� �

≥ 0 if the steel
tensile limit state has not been
reached:
(steel strain ε zAð Þ≤ 0.01)

Limit state B
(maximum
compressive
strain in
concrete)

gB εG, Cy
� �

=0.0035+ εG +Cy zB − zGð Þ
where zB is the ordinate of the most
compressed concrete fiber

gB εG, Cy
� �

≥ 0 if the concrete
compressive strain has not been
reached: (concrete strain
ε zBð Þ≥ − 0.0035)

Limit state C
(average
compressive
strain in
concrete)

gC εG, Cy
� �

=0.002+ εG +Cy zC − zGð Þ
where zC is the ordinate of point C (see
Fig. 6)

gC εG, Cy
� �

≥ 0 if the average
concrete compressive strain
limit state has not been
reached: (concrete strain
ε zCð Þ≥ − 0.002)

These functions are introduced in order to use the formalism of reliability
analysis. The safety of section is guarantied when all three functions gi εG, Cy

� �
are

strictly positive. A limit state is reached as soon as one of function goes to zero.
Negative values of a limit state function mean a crossing of the limit state threshold
and therefore a “conventional” failure of the reinforced concrete section.

In a εG, Cy
� �

diagram, the curves defined by gi εG, Cy
� �

=0 are straight lines
bounding the safety domain of the section (Fig. 7).
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6 Interaction Curves

With the transformation N My
	 
T =T εG Cy

	 
T
� �

described in paragraph 4,

limits states can also be expressed in terms of section forces:

gĩ My, N
� �

=gi εG, Cy
� �

=gi T
− 1 My, N
� �� �

where i =A, B or C ð9Þ

The gĩ My, N
� �

=0 curves define the safety domain boundary, now in terms of
the section forces (bending moment and axial load). These curves are commonly
referred to as interaction curves.

The interaction curves for the reinforced concrete section described in paragraph
4, are presented in Fig. 8 with the more usual axis (−My, −N), −N being thus
positive in compression and −My positive when it tends to compress the upper
fiber:

The A-limit state (steel elongation) bounds the lower part of the safety domain in
the above diagram. The B-limit state (extreme concrete fiber crushing) bounds the
middle part and the C-limit state (general concrete crushing) bounds the upper
part. A simultaneous positive sign of all three g ̃i My, N

� �
functions characterizes the

safety domain.

safety domain

Fig. 7 Limit states in terms of the section strain parameters
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7 Aerodynamic and Seismic Forces

Aerodynamic and seismic actions are time dependent and are generally considered
to be very random phenomena. If these actions were known as functions of time, a
dynamic structural analysis could be performed leading to a time dependent force
vector within a given section (N(t), My(t), Mz(t)) which, if the section had been
properly designed, would remain constantly within the safety domain bounded by
the interaction curves. It is clear that this approach is only conventional since it does
not take into account the loading history and inelastic behavior of materials which
have a significant impact on the response and capacity of the structure.

Moreover, the load time history is very rarely known in detail. However, it is
possible in practice, through a probabilistic or stochastic analysis, to define a curve
or a surface boundary (typically an ellipse or an ellipsoid) within which the section
forces will remain or, at least, outside of which the section forces will go with a
known and very small probability (see Capra and Davidovici 1984).

Take, for example, the bending moment M and axial force N in a beam section
resulting from static forces, yielding the static response M0 and N0, and seismic
forces in one horizontal direction, yielding the dynamic responses M −M0 and
N −N0. Assume that Mi and Ni are the response spectrum values of M and N for the
ith mode.

If the dynamic response were governed by a sole mode, then the maximum
dynamic responses M −M0 and N −N0 would be reached simultaneously.

( ) 0N,Mg~ yA =

( ) 0N,Mg~ yC =

( ) 0N,Mg~ yi ≥

safety domain

A
xi

al
 F

or
ce

 −
N

 (M
N

)

( ) 0N,Mg~ yB =

Bending Moment −My (MN.m)

Fig. 8 Interaction diagram (−N, −My)
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Because of the multiplicity of vibration modes and partial correlation between
modes, maximum axial force and maximum bending moment will not be reached
simultaneously.

However, an elliptic envelope of combined bending moment and axial load can
be defined as:

M −Mo
ΔM

� �2

+
N −No
ΔN

� �2

− 2 ρ
M −Mo
ΔM

� �
N −No
ΔN

� �
=1− ρ2

where

• Mo and No are the values at rest of axial load and bending moment,
• ΔM and ΔN are the spread of their dynamic variations,
• ρ is the coefficient of correlation between the dynamic variations of axial force

and bending moment (−1 ≤ ρ ≤ 1).

In the one directional seismic example chosen above

ΔM2 = ∑
i
∑
j
ρijMiMj

ΔN2 = ∑
i
∑
j
ρijNiNj

ρ=
∑i ∑j ρijMiNj

ΔM ⋅ΔN

where the correlation coefficients between modal responses can be inferred from the
well-known complete quadratic combination (CQC) rule:

ρij =
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξiξjωiωj

p
ξiωi + ξjωj
� �

ωiωj

ω2
i −ω2

j

� �2
+ 4ξiξjωiωj ω2

i +ω2
j

� �
+4 ξ2i + ξ2j

� �
ω2
i ω

2
j

ξi and ωi being respectively the damping ratio and circular frequency of the ith
mode.

The ellipse can also be viewed as an isoprobability curve for the “correlated
gaussian” vector of section forces.

8 Standard Practice for the Design of a Reinforced
Concrete Section

For the section to be properly designed, the above ellipse should remain within the
boundary of the section interaction curve (M, N).
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Namely, each point of the ellipse should be (and therefore should be checked to
be) within the safety domain (see Fig. 9).

In practice (Capra and Davidovici 1984 or Leblond 1980), the problem can been
simplified by inscribing the ellipse inside an octagon each side of which is tangent
to the ellipse as shown in Fig. 10 (taken from Leblond 1980).

Then one checks that each summit of the octagon, P1 to P8 in Fig. 10, lies
within the safety domain, or, which is equivalent, that the corresponding forces do
not lead to strains beyond one of the limit states, defined by a steel ratio.

Leblond has shown that the octagon surface is only 5% larger than the ellipse
surface, which means that the approximation is accurate enough for engineering
purposes.

In three dimension (My, Mz, N), the ellipsoid can be inscribed inside a poly-
hedron with 24 summits and each of these is checked with respect to the limit states.

These many checks will tell, with a good approximation, whether or not the load
envelope lies inside the safe domain, but they will not tell what the safety margin is,
nor what to do to make a section safe, if it is not.

In particular, this method does not yield the sensitivity of the safety margin to
design parameters, such as beam size or steel ratio. In other words, they are not
physically speaking and they do not help optimize the section quantities (steel
and/or concrete).

The following sections will solve this issue.

Elliptical envelope of loads

Interaction curve 
(section resistance)

Bending moment −M (MN.m)

A
xi

al
 lo

ad
 −

N
 (M

N
)

Fig. 9 Elliptical envelope of loads versus interaction curve
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Fig. 10 Approximation of the ellipse with an octagon
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9 Improvement of the Design Method—Transformation
to the Standard Normal Space

The above problem has a very simple geometrical interpretation in a slightly dif-
ferent space that we will call the “standard normal space”, thus referring to relia-
bility theories. One goes from the “original space” (M, N), where we assume that
(M, N) is a gaussian vector of correlated random variables, to the standard normal
space, where the corresponding variables are gaussian, of unit variance, centered
and non correlated, through a linear transformation.

Let us call:

• μ=
Mo

No

� �
the load vector at rest (center of the ellipse in the original space).

• D=
ΔM
ΔN

� �
the vector of maximal dynamic variations (sizing the ellipse in the

original space).

• R=
1 ρ
ρ 1

 �
the correlation matrix (giving the tilt of the ellipse in the original

space) and L=
1 0
ρ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p �
its lower triangular (Choleski) decomposition so

that LLT =R.

The transformation from the original space x= M
N

� �
to the standard normal

space u= u1
u2

� �
is performed through the following relation:

u=L− 1D− 1 x−μð Þ
x=μ+L D u

ð10Þ

Equation 10: transformation to the standard normal space
The Jacobian of the transformation is:

Jx, u =DL et Ju, x =L− 1D− 1

In the standard normal space, the load envelope is a circle of unit radius centered
about the origin.

As the transformation is linear, it preserves tangency from one space to the other
and in particular the fact that the load envelope crosses out the interaction curve or
not.

Figure 11 shows, for convenience, the interaction curve in the standard normal
space. It has been drawn point by point from the interaction diagram in the original
space. The following algorithm does not however require that this curve be drawn
in the standard normal space.
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The limit state functions are also defined in the standard normal space:

Gi uð Þ=g ̃i xð Þ=gi εG xð Þ, Cy xð Þ� �

In the standard normal space, the section fails when the interaction curve (rep-
resenting resisting characteristics) penetrates inside the envelope of loads, now
represented by the unit circle. This has a simple geometric expression:

Let β be the shortest distance from the origin to the interaction curve;

• if β≤ 1, the section is insufficiently designed (the load envelope out-crosses the
interaction curve),

• if β=1, the section is optimally designed for the dynamic loads,
• if β≥ 1, the section is designed with some margin (β− 1) with respect to the

dynamic loads.

Note that β is the minimum of the distances to the several limit states Gi = 0
measured in the standard normal space.

Thanks to the transformation to the standard normal space, the load envelope is
particularly simple (unit circle centered about the origin). However, the interaction
curve in this space has no simple expression (just as in the original space, by the
way).

We will see in the following that, in order to design the reinforced concrete
section in an optimal way, we will not need a literal expression of the interaction
curve in that space.

10 Search for a Design Point and Safety Margin

Checking whether a reinforced concrete section is properly designed for dynamic
loads sums up to evaluating the distance from the origin to the interaction curve of
that section in the standard normal space, or, which is equivalent, the minimum of
the distances to the limit states Gi = 0 in that space.

For that purpose, we use an algorithm that looks for the “design point” (name
borrowed from the reliability theories) which is the closest point to the origin on a
limit state curve. This point satisfies the following optimization problem under
constraints:

min uk k Gi uð Þ=0jf g

This particular algorithm, called HL-RF or improved HL-RF (see Ditlevsen and
Madsen 1996 and Zhang and Der Kiureghian 1995) is well known in reliability
analysis. We review the main steps hereafter:

(a) Initialize by fixing tolerances ξ1 and ξ2 (for example ξ1 = ξ2 = 10− 3) and a
starting point u1 (typically u1 = 0 0½ �T or x1 Mo No½ �T).

270 M. Kahan



(b) At each step, compute xj = x uj
� �

using Eq. 10, then xj = Mj Nj½ �T.
The distributor of strains χ xj

� �
= εG Cy½ �T = T− 1 Mj, Nj

� �� �T
, comes out of

the procedure suggested in paragraph 4, and one finds:

Gi uj
� �

=gĩ xj
� �

=gi χ xj
� �� �

and∇Gi uj
� �T =∇xgĩ xj

� �TJx, u
(note that the limit state function in the normal standard space and its gradients
are only computed through their original space counterpart)

with∇xgĩ xj
� �

=

∂M
∂εG

∂N
∂εG

∂M
∂Cy

∂N
∂Cy

2
64

3
75

− 1

∇χgi χ xj
� �� �

=

∂M
∂εG

∂N
∂εG

∂M
∂Cy

∂N
∂Cy

2
64

3
75

− 1
∂gi
∂εG
∂gi

∂Cy

8><
>:

9>=
>;

Incidentally, note that
∂M
∂εG

∂N
∂εG

∂M
∂Cy

∂N
∂Cy

2
4

3
5

− 1

=
∂εG
∂M

∂Cy

∂M
∂εG
∂N

∂Cy

∂N

2
4

3
5 is computed using Eq. 7.

(c) The direction vector of search for the “descent” algorithm is:

dj =
−Gi uj

� �
+∇Gi uj

� �Tuj
∇Gi uj

� ��� ��
∇Gi uj

� �
∇Gi uj

� ��� �� −uj

(d) And the step size λj can be either chosen arbitrarily between 0 and 1 (0.2 for
example) or by looking for the minimum of a “merit function” (see Zhang and
Der Kiureghian, 1995) m uð Þ=1 2̸ uk k2 + cG uð Þ (where constant
c > uj

�� �� ̸ ∇G uj
� ��� ��):

λj = arg min
λ∈ �0, 1�

m uj + λdj
� �

−m uj
� �	 


(e) The next trial point is:

uj + 1 =uj + λjdj

(f) Convergence is reached when the trial point is close to the limit state
Gi uj
� �

≈ 0
� �

and when the search direction does not change any more:

• Gi uj
� �

G̸i u1ð Þ�� ��≤ ξ1
• uj + 1 −αT

j ujαj

��� ���≤ ξ2 where the unit vector giving the direction of search

has been defined: αj = −∇G uj
� �

̸ ∇G uj
� ��� ��
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(g) If the algorithm has not converged, the procedure resumes at step (b),
(h) If it has converged, we define:

• The design point u* = uj
• The direction unit vector α= −∇G uj

� �
̸ ∇G uj

� ��� ��
• The distance to the origin β=αTu*

In the numerical example below, we will use the following values: Mo = 0,
No = 75 MN, ΔMo =450 MN.m, ΔNo =50 MN and ρ=1 3̸.

Applied to the above studied reinforced concrete section, the algorithm (with λj
fixed at 0.2) converges in 27 iterations and yields a β=0.8379 for the steel tension
limit state (A) (the more concerned in this particular case) which expresses that the
reinforced concrete section is insufficiently designed and lacks of steel.

A small circle shows the design point on Fig. 11 together in the original space of
loads and in the standard normal space.

11 Optimization of a Reinforced Concrete Section

An interesting property of the HL-RF algorithm is that one obtains quite easily as
by-products the sensitivities of distance β with respect to the system parameters and
in particular with respect to the parameters that can change the interaction curve.

Let θ be a multiplication factor of the initial steel quantity in the reinforced
concrete section. Namely, any particular steel fiber whose cross section is initially
dSo will turn θ dSo during the optimization process.

N= ∑
concrete fibers

σ ε εG, Cy
� �

, concrete
� �

dS+ ∑
steel fibers

σ ε εG, Cy
� �

, steel
� �

θ dSo

M= ∑
concrete fibers

zs − zGð Þ σ ε εG, Cy
� �

, concrete
� �

dS+ ∑
steel fibers

zs − zGð Þ σ ε εG, Cy
� �

, steel
� �

θ dSo

8<
:

ð11Þ

The limit state thus becomes naturally a function of parameter θ.
One shows (Hohenbichler and Rackwitz 1986) that the infinitesimal variation

(sensitivity) of β with respect to θ writes:
∂β
∂θ =

1
∇Gk k

∂g̃
∂θ x*, θð Þ where x* is the design point in the original space. In

order to optimize the steel quantity that lacks in the example we used before, we
apply this formula to the steel tension limit state (A):

gÃ M,Nð Þ=0.01− εG M,N, θð Þ− zA − zGð Þ ⋅Cy M,N, θð Þ

thus ∂β
∂θ =

1
∇Gk k − ∂εG

∂θ − zA − zGð Þ ∂Cy

∂θ

h i
.
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The distributor of strain is not an explicit function of N, M, and θ. However, one
can compute its partial derivative with respect to parameter θ, that is, with N and M
fixed:

dN=
∂N
∂εG

dεG +
∂N
∂Cy

dCy +
∂N
∂θ

dθ=0

dM=
∂M
∂εG

dεG +
∂M
∂Cy

dCy +
∂M
∂θ

dθ=0

from which we find

∂εG
∂θ = −

∂N

∂θ

∂M

∂Cy

−
∂M

∂θ

∂N

∂Cy

∂N

∂εG

∂M

∂Cy

−
∂M

∂εG

∂N

∂Cy

and ∂Cy

∂θ = −

∂M

∂θ

∂N

∂εG
−

∂N

∂θ

∂M

∂εG
∂N

∂εG

∂M

∂Cy

−
∂M

∂εG

∂N

∂Cy

with

∂N
∂θ = ∑

fibre d0acier
σ ε εG, Cy

� �
, acier

� �
dSo

∂M
∂θ = ∑

fibres d0acier
zs − zGð Þ σ ε εG, Cy

� �
, acier

� �
dSo

which comes out Eq. 11. All other terms were computed previously (Eq. 7).

β Design 
point

Bending moment M (MN.m)

A
xi

al
 lo

ad
 N

 (M
N

)

Fig. 11 Resistance and load (original space to the left, standard normal space to the right)
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Having thus computed ∂β
∂θ, one finds by first order approximation the increment of

parameter θ which is necessary to make the section optimal (βoptimal = 1):

Δθ=
1− β
∂β
∂θ

Applied to the previous example, this leads to multiply each steel section by 1.8377.
With these new steel quantities, one obtains an excellent result as confirmed by the
new position of the interaction curve which is (almost) tangent to the load ellipse in
the original space and the new index β = 0.9997 in the standard normal space
(Fig. 12). In this case, it is not even necessary to pursue the optimization process
beyond this very first step.

12 Conclusion

We changed the elliptic envelope of dynamic load to a unit circle centered about the
origin through a simple geometric transformation. In this new space of loads and
resistance, called “standard normal space”, the vulnerability of the reinforced
concrete section with respect to the dynamic load has a very simple geometrical
expression: for the section to be safe, the distance β of the origin to the limit state

Moment −M (MN.m)

A
xi

al
 lo

ad
 −

N
 (M

N
)

Fig. 12 Load envelope and resistance after optimization
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curves (interaction curves) must be greater or equal to one. The distance β can be
viewed as a measure of the safety margin.

The distance β is evaluated using an algorithm well known in the field of
reliability of structures. The algorithm converges rapidly and, conveniently, does
not require to draw the interaction curves in either space (original M-N space or
standard normal space). Furthermore, it is independent of the dimension of the load
and resistance space so that the elements derived here extend naturally to higher
dimension problems (axial force and two bending moments, shear force, etc.).

The algorithm yields, as a by-product, the sensitivity of margin β to modifica-
tions in the section properties (steel quantity, thickness of a concrete member),
which allows to optimize material quantities in a very efficient way.

References

Capra A, Davidovici V (1984) Calcul dynamique des structures en zone sismique, Eyrolles
Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley
Hohenbichler M, Racwitz R (1986) Sensitivity and importance measures in structural reliability.

Civil Eng Syst 3:203–210
Kahan M (2002) Dimensionnement d’une section en béton armé soumise à une enveloppe

elliptique de sollicitations dynamiques combinées. Revue française de génie civil 7–
8/2002:1283–1308

Leblond L (1980) Calcul sismique par la méthode modale—utilisation des réponses pour le
dimensionnement. In: Annales de l’ITBTP, no 380, pp 119–127

Zhang Y, Der Kiureghian A (1995) Two improved algorithms for reliability analysis. In:
Rackwitz R, Augusti G, Borri A (eds) Reliability and optimization of structural systems,
proceedings of the 6th IFIP WG 7.5 working conference on reliability and optimization of
structural systems, 1994, pp 297–304

Optimal Design of Reinforced Concrete Section … 275



FORM Sensitivities to Distribution
Parameters with the Nataf Transformation

Jean-Marc Bourinet

Abstract The Nataf transformation has been proven very useful in reliability assess-

ment when marginal distributions are statistically known and linear correlation is

sufficient for modeling the dependence between random inputs. Under the assump-

tion that the use of FORM is appropriate for the problem of interest, it is often of

importance to quantify how the FORM solution is sensitive to the distribution para-

meters of the random inputs. Such information can be exploited in different contexts

including optimal design under uncertainty. This chapter describes how sensitivities

to marginal distribution parameters and linear correlation can be assessed numeri-

cally in the context of FORM based on the Nataf transformation. The emphasis is

on the accuracy of such sensitivities with no other approximations than the one due

to numerical integration. In the presented examples, the accuracy of these sensitivi-

ties is assessed w.r.t. reference solutions. The sensitivity to correlation brings useful

information which are complementary to those w.r.t. marginal distribution parame-

ters. High sensitivities may be detected such as illustrated in the context of stochastic

crack growth based on the Virkler data set.

1 Introduction

In time-invariant structural reliability, the failure probability p
f
is formulated in terms

of a random vector X =
(
X1, … ,Xn

)T
representing n uncertain inputs of a system of

interest and a limit-state function (LSF) g ∶ X ⊆ Rn → R, x ↦ g (x) which defines

its failure criterion (or a combination of its failure criteria). We conventionally define

the failure domain as Fx = {x ∈ X ∶ g (x) ≤ 0} and the safe domain F x as the

complementary domain of Fx in X . The failure probability p
f

is given by the fol-

lowing n-fold integral:

J.-M. Bourinet (✉)

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal,

F-63000 Clermont Ferrand, France

e-mail: bourinet@sigma-clermont.fr

© Springer International Publishing AG 2017

P. Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-52425-2_12

277



278 J.-M. Bourinet

p
f
=
∫g(x)≤0

fX (x) dx =
∫X

1Fx
(x) fX (x) dx, (1)

in which fX ∶ Rn → R+, x ↦ fX (x) denotes the joint continuous probability density

function (pdf) of X, 1Fx
(x) is the indicator function of the failure domain Fx such

that 1Fx
(x) = 1 if x ∈ Fx, 1Fx

(x) = 0 otherwise, and dx = dx1 …dxn.

The reliability problem defined in Eq. (1) is conveniently expressed in the n-

dimensional standard normal space Rn
by means of a suitable transformation T ∶

X → Rn
, x =

(
x1, … , xn

)T
↦ u =

(
u1, … , un

)T = T (x) constructed such that the

following equalities (in distribution) hold:

U = T (X) ⇔ X = T−1 (U) , (2)

where U =
(
U1, … ,Un

)T
and Ui for i = 1, … , n are independent normal variates

with zeros means and unit standard deviations. Equation (1) rewrites as follows:

p
f
=
∫G(u)≤0

𝜑n (u) du =
∫Rn

1Fu
(u) 𝜑n (u) du, (3)

where G = g◦T−1
denotes the LSF expressed in the standard normal space, Fu =

{u ∈ Rn ∶ G (u) ≤ 0} is the failure domain in the standard normal space, 𝜑n (⋅)
denotes the n-dimensional standard normal pdf with independent components and

du = du1 …dun.

Several methods are available for assessing p
f

from Eq. (3). The reader is invited

to refer to general textbooks for a review of well-established techniques with their

main advantages and drawbacks. The scope of this chapter will be restricted to the

approximation method known as the first-order reliability method (FORM). In a

FORM analysis, the objective is to find the point P∗
of the limit-state surface (LSS)

F 0
𝐮 = {u ∈ Rn ∶ G (u) = 0} that is the closest to the origin O in the standard nor-

mal space, see e.g. (Ditlevsen and Madsen 2007; Lemaire et al. 2010). This point

known as the most probable failure point (MPFP) or design point in structural relia-

bility is the solution of the following quadratic optimization problem under nonlinear

constraint:

u∗ = arg min
u∈Rn

1
2
uTu subject to G (u) = 0, (4)

where u∗ is the coordinate vector of P∗
in the standard normal space. Several meth-

ods are available to solve the optimization problem defined in Eq. (4), including

general algorithms such as the usual sequential quadratic programming (SQP) algo-

rithm or a few others which have been specifically tailored to solve Eq. (4), e.g.

the HLRF algorithm (Hasofer and Lind 1974; Rackwitz and Fiessler 1978) and the

i-HLRF algorithm (Zhang and Der Kiureghian 1994). The so-called Hasofer-Lind

reliability index 𝛽
HL

is given by 𝛽
HL

= 𝛽 = 𝜶
Tu∗ where 𝜶 is a unit vector such that

𝜶 = −∇G (u∗) ∕‖∇G (u∗)‖ and ∇ is the gradient operator. Under the assumption of

a unique MPFP and a linear (or nearly linear) LSS, the failure probability is well
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approximated by the first-order Taylor polynomial of G at 𝐮∗. This approximation

simply reads pFORM

f
= Φ (−𝛽) where Φ (⋅) denotes the standard normal cumulative

distribution function (cdf). The following notations will also be used in the sequel:

Φ−1 (⋅) will denote the inverse of the standard normal cdf and 𝜑 (⋅) the standard nor-

mal pdf.

2 Nataf Transformation

The joint pdf fX is in general not fully known due to insufficient probability informa-

tion. Our first assumption is that the marginal distributions are known, here defined

by their respective marginal cdfs FXi
for i = 1, … , n. A second assumption is made

regarding the dependence structure of the random vector X. In the sequel, we will

assume that this dependence can be modeled by the linear correlation between the

components of X. The linear correlation coefficients of
(
Xi,Xj

)
-pairs are denoted by

𝜌ij = 𝜌XiXj
for i, j = 1, … , n and 𝐑 =

[
𝜌ij

]
1≤i,j≤n is used for the correlation matrix.

Restricting the scope of the reliability analysis to linear correlation is often a practi-

cal choice in the case of scarce information. It is important to point out that such an

assumption may be questionable as raised by Lebrun and Dutfoy (2009b) and other

types of dependence may be better suited.

The transformation T under the above defined assumptions is known as the Nataf

transformation (Nataf 1962). This transformation has been introduced in structural

reliability by Liu and Der Kiureghian (1986a). Its presentation in the framework of

copulas is due to Lebrun and Dutfoy (2009b), from which the text of this section

is inspired. In the Nataf transformation, each component Xi of X is first mapped

into a uniform random variable Vi on [0, 1] using its cdf FXi
. These uniform random

variables Vi are then mapped into correlated standard normal variables Zi using the

inverse cdf of the standard normal distribution, i.e. such that Z =
(
Z1, … ,Zn

)T ∼
N

(
𝟎,𝐑0

)
where 𝐑0 denotes the correlation matrix of the random vector Z. The

correlated standard normal variables Zi are finally mapped into independent standard

normal variables Ui using a linear transformation denoted by Tzu.

The transformation T is therefore defined as the following composed application:

T = Tzu◦Tvz◦Txv ∶ X → [0, 1]n → Rn → Rn

x ↦ v = Txv (x) ↦ z = Tvz (v) ↦ u = Tzu (z)
(5)

where x =
(
x1, … , xn

)T
, v =

(
v1, … , vn

)T
, z =

(
z1, … , zn

)T
, u =

(
u1, … , un

)T
,

and where, for i = 1, … , n:

vi = FXi

(
xi
)

, zi = Φ−1 (vi
)
. (6)

For the construction of Tzu, we assume a linear relation between z and u in the

form z = 𝐀u. From the definition of the correlation matrix 𝐑0, it is easy to show that
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𝐀 can be chosen as the lower-triangular matrix 𝐋0 of the Cholesky decomposition

of 𝐑0 (assumed positive definite) such that:

𝐑0 = 𝐋0𝐋T
0 , (7)

which defines the transformation Tzu:

Tzu ∶ Rn → Rn

z ↦ u = Tzu (z) = 𝐋−1
0 z. (8)

As described in Lebrun and Dutfoy (2009b), the underlying assumption of the

Nataf transformation is that the copulaCZ of the random vectorZ (or equivalently the

copula CX of X) is the n-dimensional normal copula parametrized by the correlation

matrix 𝐑0.

The joint cdf of Z is therefore assumed to be given by:

FZ (z) = FZ
(
z1, … , zn

)
= CZ

(
Φ

(
z1
)
, … ,Φ

(
zn
))

= CNn

(
Φ

(
z1
)
, … ,Φ

(
zn
)
;𝐑0

)

= Φn
(
z1, … , zn;𝐑0

)
,

(9)

where CZ is the n-dimensional normal copula CNn
parametrized by the correlation

matrix 𝐑0.

The joint pdf of Z therefore reads:

fZ (z) = fZ
(
z1, … , zn

)
= cZ

(
Φ

(
z1
)
, … ,Φ

(
zn
)) n∏

i=1
𝜑

(
zi
)

= cNn

(
Φ

(
z1
)
, … ,Φ

(
zn
)
;𝐑0

) n∏

i=1
𝜑

(
zi
)

= 𝜑n
(
z1, … , zn;𝐑0

)
,

(10)

where cZ is the density of n-dimensional normal copula parametrized by the corre-

lation matrix 𝐑0, whose expression is:

cNn

(
u1, … , un;𝐑0

)
=

𝜑n
(
Φ−1 (u1

)
, … ,Φ−1 (un

)
;𝐑0

)

∏n
i=1 𝜑

(
Φ−1

(
ui
)) , (11)

where 𝜑n
(
⋅;𝐑0

)
is the n-dimensional standard normal pdf with linear correlation

matrix 𝐑0.

The joint pdf in the x-space X is obtained as a direct application of the invari-

ance of the copula CZ by the n strictly increasing transformations (F−1
Xi
◦Φ) for

i = 1, … , n. We therefore have CX = CZ and cX = cZ. The joint pdf of X is therefore

given by the following expression:
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fX (x) = fX
(
x1, … , xn

)
= cX

(
FX1

(
x1
)
, … ,FXn

(
xn
)) n∏

i=1
fXi

(
xi
)

=
𝜑n

(
z1, … , zn;𝐑0

)

∏n
i=1 𝜑

(
zi
)

n∏

i=1
fXi

(
xi
)
,

(12)

which is the expression given in Eq. (11) of Ref. (Liu and Der Kiureghian 1986a).

The 𝐑0 matrix has not been explicited yet. The elements 𝜌0,ij of this matrix are

defined in terms of the known linear correlation coefficients 𝜌ij = 𝜌XiXj
of Xi and Xj

components of X. They are obtained from the following equation, for i, j = 1, … , n,

in which we use the bivariate form of the joint pdf expressed in Eq. (12):

𝜌ij = E

[(
Xi − 𝜇i

𝜎i

)(Xj − 𝜇j

𝜎j

)]

=
∫Xj

∫Xi

(
xi − 𝜇i

𝜎i

)(xj − 𝜇j

𝜎j

)
𝜑2

(
zi, zj, 𝜌0,ij

)

𝜑

(
zi
)
𝜑

(
zj
) fXi

(
xi
)
fXj

(
xj
)
dxidxj

=
∫R ∫R

h
(
zi, zj, 𝜇i, 𝜇j, 𝜎i, 𝜎j

)
𝜑2

(
zi, zj, 𝜌0,ij

)
dzidzj,

(13)

where Xi and Xj denote the respective supports of the ith and jth components of the

random vector X, 𝜇i and 𝜇j their respective means, 𝜎i and 𝜎j their respective standard

deviations,

where h
(
zi, zj, 𝜇i, 𝜇j, 𝜎i, 𝜎j

)
=

(
F−1
Xi

(
Φ

(
zi
))

− 𝜇i

𝜎i

)⎛
⎜
⎜
⎝

F−1
Xj

(
Φ

(
zj
))

− 𝜇j

𝜎j

⎞
⎟
⎟
⎠
,

and where 𝜑2
(
zi, zj, 𝜌0,ij

)
= 𝜑2

(
zi, zj;

[
1 𝜌0,ij
𝜌0,ij 1

])
= 1

2𝜋
√

1 − 𝜌

2
0,ij

exp
⎛
⎜
⎜
⎜
⎝

−
z2i − 2𝜌0,ijzizj + z2j

2
(
1 − 𝜌

2
0,ij

)

⎞
⎟
⎟
⎟
⎠

.

The Nataf transformation is valid if Eq. (13) admits solutions for all i, j = 1, … , n
and if the linear correlation matrix 𝐑0 is positive definite. Such a situation is often

met in applications of practical interest as raised in (Liu and Der Kiureghian 1986a).

Finding 𝜌0,ij solutions of the integral relation defined in Eq. (13) is in general

tedious and, for this reason, approximate formulae for 𝜌0,ij have been derived by Liu

and Der Kiureghian (1986a) for most common statistical distributions. These formu-

las are in general obtained by least-square fitting and therefore approximate, except

for a few pairs of distributions. An alternative solution consists in calculating 𝜌0,ij for

i, j = 1, … , n and i > j by numerical integration such as implemented in FERUM

4.x (Bourinet et al. 2009). Such calculations are done only once to define the transfor-

mation T and they are fast with any currently available computers. The coefficients

𝜌0,ij of the 𝐑0 matrix are obtained by a 2D numerical integration as solutions of the

following equation for i, j = 1, … , n and i > j:
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𝜌ij =
ni∑

k=1

nj∑

l=1
𝜔k𝜔l h

(
zk, 𝜇i, 𝜎i, zl, 𝜇j, 𝜎j

)
𝜑2

(
zk, zl, 𝜌0,ij

)
, (14)

where
(
zk, zl

)
are the ni × nj integration points and 𝜔k𝜔l their respective weights. A

Gaussian quadrature rule is applied over the truncated domain [−6, 6] × [−6, 6]. A

specific attention must be paid to strongly correlated random variables for accurate

𝜌0,ij values. A practical rule adopted in FERUM 4.x consists in increasing the number

of integration points along each dimension with correlation, ranging from ni = nj =
32 points along each dimension for absolute values of correlation lower than 0.9 to

1, 024 points for absolute values larger than 0.9995.

3 Sensitivities to Distribution Parameters

In reliability assessment, it is often of interest to evaluate the sensitivity of the fail-

ure probability p
f

to the distribution parameters which define the joint pdf fX. Such

sensitivities bring useful information about the role of each random input parameter

in failure. Quantifying the importance of these parameters is for instance of great

importance in optimal design under uncertainty.

In the sequel, we assume that all the distribution parameters are gathered in a vec-

tor denoted by 𝜽f = 𝜽 = (𝜃1, … , 𝜃n
𝜽

)T (the subscript f will be dropped for simpler

notations). 𝜃k will designate any given parameter of this vector. These parameters

include the statistical moments of the components Xi of the random vector X for

i = 1, … , n or any parameters used for defining the corresponding marginal distri-

butions. The correlation coefficients 𝜌ij of 𝐑 for i, j = 1, … , n are also included in

𝜽 when the Nataf transformation is applied.

The sensitivities of the failure probability to distribution parameters are investi-

gated here in the restrictive context of a FORM analysis. Such sensitivities are of

course of interest with other methods too. They may be obtained e.g. as a straight-

forward post processing of a crude Monte Carlo simulation by means of the score

function introduced by Rubinstein (1976; 1986). Such an approach has been brought

to the structural reliability community by the work of Wu (1994). A similar post

processing can also be applied with subset simulation (Au and Beck 2001) as pro-

posed by Song et al. (2009), see also the presentation by Dubourg (2011, pp. 161–

163).

In a FORM analysis, the gradient of the failure probability pFORM

f
w.r.t. the dis-

tribution parameters 𝜽 is given by:

∇
𝜽
pFORM

f
= −𝜑 (𝛽) ∇

𝜽
𝛽. (15)

The gradient of the reliability index 𝛽 w.r.t. 𝜽 reads as follows, as shown in

Hohenbichler and Rackwitz (1986):
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∇
𝜽
𝛽 = 𝐉u,𝜽 (u∗;𝜽)

T
𝜶, (16)

where 𝐉u,𝜽 (u;𝜽) =
[
𝜕ui∕𝜕𝜃j

]
1≤i≤n , 1≤j≤n

𝜽

represents the Jacobian of the transforma-

tion T w.r.t. the distribution parameters 𝜽. Note that this Jacobian is expressed at the

MPFP u∗ in Eq. (16).

The kth column of this Jacobian matrix for k = 1, … , n
𝜽

can be obtained by dif-

ferentiating u w.r.t. the given distribution parameter 𝜃k in Eq. (8):

𝜕u
𝜕𝜃k

= 𝐋−1
0

𝜕z
𝜕𝜃k

+
𝜕𝐋−1

0

𝜕𝜃k
z. (17)

Two main cases deserve attention. The first case appears when 𝜃k is a correla-

tion coefficient of 𝐑. The components zi = Φ−1 (FXi

(
xi
))

of z for i = 1, … , n are

expressed in terms of the parameters of the marginal distributions of X and therefore

does not depend on 𝜃k. For this reason the first term of Eq. (17) vanishes. Sensitivity

to correlation corresponding to this first case is addressed in Sect. 3.1. The second

case appears when 𝜃k is a parameter of a given marginal distribution (e.g. its mean

or standard deviation or, more generally, any parameter of this marginal distribu-

tion). The dependence of z on 𝜃k is clear from the transformation Tvz◦Txv defined in

Eq. (17). The calculation of the first term of Eq. (17) is therefore needed for assess-

ing the sensitivity to 𝜃k. The contribution of the second term is less clear and often

neglected. It may be however non zero due to 𝜇i, 𝜎i, 𝜇j and 𝜎j that appear in Eq. (13),

which may imply a dependence of 𝐑0 and therefore 𝐋−1
0 on 𝜃k. The sensitivity to

parameters of the marginal distributions is addressed in Sect. 3.2.

3.1 Sensitivity to Correlation

Sensitivity to correlation in the framework of the Nataf transformation has been stud-

ied in a very few works (Žanić and Žiha 1998, 2001; Bourinet and Lemaire 2008).

The methods proposed in Ẑanic and Ẑiha (1998, 2001) are based on the approxi-

mate formulas F = 𝜌0,ij∕𝜌ij of Liu and Der Kiureghian (1986a) derived for pairs of

commonly used marginal distributions. Two methods are proposed in the work of

Žanić and Žiha, one based on the Cholesky decomposition as later used by Bourinet

and Lemaire (2008) and described in the present chapter, the other one based on a

spectral decomposition of 𝐑0. The objective here is to assess these sensitivities by

numerical integration from the integral problem defined in Eq. (13) in order to obtain

highly accurate sensitivities.

The sensitivity to a given correlation coefficient 𝜌ij of 𝐑 requires to evaluate the

following expression at u∗:

𝜕u
𝜕𝜌ij

=
𝜕𝐋−1

0

𝜕𝜌ij
z. (18)



284 J.-M. Bourinet

From 𝐋−1
0 𝐋0 = 𝐈n×n where 𝐈n×n is the n × n identity matrix, we can straightfor-

wardly obtain:

𝜕𝐋−1
0

𝜕𝜌ij
= −𝐋−1

0
𝜕𝐋0

𝜕𝜌ij
𝐋−1
0 . (19)

This expression shows that the sensitivity of 𝐋−1
0 w.r.t. 𝜌ij can be obtained from

the one of 𝐋0. The evaluation of 𝜕𝐋0∕𝜕𝜌ij is carried out in two steps as described in

the following.

In the first step, the sensitivity of 𝐑0 is derived from Eq. (13). All the elements

of the matrix 𝜕𝐑0∕𝜕𝜌ij are zeros except the one in the ith row and jth column which

can be expressed as follows:

𝜕𝜌0,ij

𝜕𝜌ij
=

(
𝜕𝜌ij

𝜕𝜌0,ij

)−1

. (20)

The sensitivity 𝜕𝜌ij∕𝜕𝜌0,ij is assessed from Eq. (21) by numerical integration with

the same rule as the one used to solve Eq. (13), see Eq. (14):

𝜕𝜌ij

𝜕𝜌0,ij
=
∫R ∫R

h
(
zi, zj, 𝜇i, 𝜇j, 𝜎i, 𝜎j

) 𝜕𝜑2
(
zi, zj, 𝜌0,ij

)

𝜕𝜌0,ij
dzidzj. (21)

In the second step, the sensitivity of 𝐋0 w.r.t. 𝜌ij is obtained from the one of 𝐑0
through a step-by-step differentiation of the Cholesky algorithm. The algorithm used

for calculating both 𝐋0 and 𝜕𝐋0∕𝜕𝜌ij is given in Appendix.

3.2 Sensitivity to Parameters of Marginal Distributions

For k = 1, … , n
𝜽
, we want to assess 𝜕u∕𝜕𝜃k in Eq. (17) where 𝜃k represents any

given marginal distribution parameter. Evaluating the first term 𝐋−1
0 𝜕z∕𝜕𝜃k is rather

standard from the following expression obtained from Eq. (6), for i = 1, … , n:

𝜕zi
𝜕𝜃k

= 1
𝜑

(
FXi

(
xi
))

𝜕FXi

(
xi
)

𝜕𝜃k
, (22)

in which 𝜕FXi

(
xi
)
∕𝜕𝜃k has to be derived for any usual statistical distribution.

Evaluating the second term
(
𝜕𝐋−1

0 ∕𝜕𝜃k
)
z is less easy. The sensitivity of 𝐋−1

0 to

𝜃k is obtained in three steps similarly to what was done for the sensitivity of 𝐋−1
0 to

correlation in Sect. 3.1:
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1. We first express the sensitivity
𝜕𝐑0

𝜕𝜃k
, as described in the following.

2.
𝜕𝐋0

𝜕𝜃k
is obtained from 𝐑0 and

𝜕𝐑0

𝜕𝜃k
by means of the algorithm given in Appendix.

3.

𝜕𝐋−1
0

𝜕𝜃k
is obtained from

𝜕𝐋0

𝜕𝜃k
, see Eq. (19).

The sensitivity of 𝐑0 to 𝜃k is obtained from the following equation. For any i, j =
1, … , n, we have:

𝜕𝜌ij

𝜕𝜃k
=
∫R ∫R

[
𝜕h

(
zi, zj, 𝜇i, 𝜇j, 𝜎i, 𝜎j

)

𝜕𝜃k
𝜑2

(
zi, zj, 𝜌0,ij

)
+

h
(
zi, zj, 𝜇i, 𝜇j, 𝜎i, 𝜎j

) 𝜕𝜑2
(
zi, zj, 𝜌0,ij

)

𝜕𝜃k

]

dzidzj,
(23)

where:

𝜕h
𝜕𝜃k

= 𝜕h
𝜕zi

𝜕zi
𝜕𝜃k

+ 𝜕h
𝜕zj

𝜕zj
𝜕𝜃k

+ 𝜕h
𝜕𝜇i

𝜕𝜇i

𝜕𝜃k
+ 𝜕h

𝜕𝜇j

𝜕𝜇j

𝜕𝜃k
+ 𝜕h

𝜕𝜎i

𝜕𝜎i

𝜕𝜃k
+ 𝜕h

𝜕𝜎j

𝜕𝜎j

𝜕𝜃k
, (24)

and:

𝜕𝜑2

𝜕𝜃k
=

𝜕𝜑2

𝜕zi

𝜕zi
𝜕𝜃k

+
𝜕𝜑2

𝜕zj

𝜕zj
𝜕𝜃k

+
𝜕𝜑2

𝜕𝜌0,ij

𝜕𝜌0,ij

𝜕𝜃k
. (25)

It is first important to notice that the unknown sensitivity 𝜕𝜌0,ij∕𝜕𝜃k (i.e. the ele-

ment of 𝜕𝐑0∕𝜕𝜃k in the ith row and jth column) appears in the integrand of Eq. (23),

see last term of Eq. (25). This sensitivity is obtained by solving Eq. (23) by numerical

integration, in which we have 𝜕𝜌ij∕𝜕𝜃k = 0. We use again the same rule for numer-

ical integration as the one defined for the calculation of 𝐑0. Note that the partial

derivatives of 𝜇i, 𝜇j, 𝜎i and 𝜎j w.r.t. 𝜃k in Eq. (24) are all zeros if 𝜃k is a distribution

parameter of a component of X other than Xi or Xj.

4 Application Examples

The results presented in this section are all obtained with FERUM 4.x in which sen-

sitivities to correlation and marginal distribution parameters have been implemented

as described in Sect. 3. Please refer to the mod_corr_solve.m function and all

the additional files included in the sensitivity sub-folder of the FERUM 4.x package.
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Table 1 Example 1: definition of marginal distributions of X
Component Xi Type of distribution Mean 𝜇i Standard deviation 𝜎i

X1 Lognormal 500 100

X2 Lognormal 2,000 400

X3 Uniform 5 0.5

4.1 Example 1: CalRel Example

This first example is taken from CalRel software user’s manual (Liu et al. 1989). The

marginal distributions of the three components of X are defined in Table 1.

The correlation matrix of the random vector X reads:

𝐑 =
⎡
⎢
⎢
⎣

1 0.3 0.2
0.3 1 0.2
0.2 0.2 1

⎤
⎥
⎥
⎦
. (26)

The LSF is given by:

g (x) = g
(
x1, x2, x3

)
= 1 −

x2
1, 000x3

−
(

x1
200x3

)2

. (27)

The following results are obtained with the the i-HLRF algorithm: 𝛽 = 1.7728,

pFORM

f
= 3.8133 × 10−2. Note that very strict convergence criteria are imposed on

the FORM solution for highly accurate sensitivities, here up to a 4 digit-accuracy

(both e1 and e2 errors lower than 10−6 with the i-HLRF algorithm, see (Zhang and

Der Kiureghian 1994) for details about these criteria).

The sensitivity of 𝛽 w.r.t. distribution parameters and correlation are respectively

listed in Tables 2 and 3. The sensitivities 𝜕𝛽∕𝜕𝜃k given in Table 2 are based on both

terms of Eq. (17). The first term is dominant for all these sensitivities and the sec-

ond term represents less than 0.2% of the first one. The sensitivity to correlation of

this specific example has been studied and presented earlier in Ref. (Žanić and Žiha

Table 2 Example 1: sensitivities w.r.t. parameters of marginal distributions

𝜃k 𝜕𝛽∕𝜕𝜃k 𝜃k 𝜕𝛽∕𝜕𝜃k 𝜃k 𝜕𝛽∕𝜕𝜃k 𝜃k 𝜕𝛽∕𝜕𝜃k
𝜇1 −0.0059 𝜎1 −0.0079 aa1 −3.7390 ba1 −4.7855
𝜇2 −0.0009 𝜎2 −0.0006 𝜆

b
2 −1.9660 𝜁

b
2 −1.6698

𝜇3 1.2602 𝜎3 −1.1942 𝜆

b
3 0.9748 𝜁

b
3 0.2854

a [a1, b1
]

is the support of the uniform distribution of X1.

b
𝜆i = E

[
lnXi

]
and 𝜁i =

√
Var

[
lnXi

]
are the parameters of the lognormal distribution of Xi for

i = 2, 3
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Table 3 Example 1: sensitivities to correlation

Present approach Forward finite

differences

Ref. (Žanić and Žiha

2001)

𝜕𝛽∕𝜕𝜌21 −0.5151 −0.5150 −0.515
𝜕𝛽∕𝜕𝜌31 0.8916 0.8916 0.890
𝜕𝛽∕𝜕𝜌32 0.4688 0.4689 0.468

2001; Bourinet and Lemaire 2008). The results obtained in Ẑanic and Ẑiha (2001)

are reported in Table 3 for comparison. The results obtained by means of the pro-

posed numerical integration are in close agreement with those of Žanić and Žiha.

Besides, they are also almost equal to those obtained by finite forward differences

with perturbations of the correlation coefficients set to 10−5 𝜌ij.

4.2 Example 2: Load-Resistance Problem with Correlated
Lognormal R and S

We consider two lognormally distributed random variables R = X1 and S = X2 with

a linear correlation 𝜌 = 𝜌12 = 0.5. Their respective means are 𝜇1 = 5 and 𝜇2 = 1
and their respective standard deviations are 𝜎1 = 5 and 𝜎2 = 1. The coefficients of

variation of X1 and X2, respectively 𝛿1 = 𝜎1∕𝜇1 and 𝛿2 = 𝜎2∕𝜇2, are both equal to

one. 𝛿
(
= 𝛿1 = 𝛿2

)
will denote this coefficient of variation. The LSF is expressed as

follows:

g (x) = g
(
x1, x2

)
= x1 − x2. (28)

The 𝐑0 matrix of the Nataf transformation is defined by the following expression,

which is exact in this specific case, see (Liu and Der Kiureghian 1986a, Table 8):

𝜌0,12 =
ln

(
1 + 𝜌12𝛿1𝛿2

)

√
ln

(
1 + 𝛿

2
1

)
ln

(
1 + 𝛿

2
2

) =
ln

(
1 + 𝜌𝛿

2)

ln
(
1 + 𝛿

2
) . (29)

It is easy to demonstrate that the LSS is linear in the standard normal space, which

gives an exact failure probability with FORM. We obtain p
f
= pFORM

f
= Φ (−𝛽)

where 𝛽 reads:

𝛽 =
𝜆1 − 𝜆2√

𝜁

2
1 + 𝜁

2
2 − 2𝜌0,12𝜁1𝜁2

=
ln
(
𝜇1

𝜇2

)

√

2 ln
(

1 + 𝛿
2

1 + 𝜌 𝛿
2

) = 2.1218. (30)
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where 𝜆i=E
[
lnXi

]
= ln𝜇i − 0.5 ln

(
1 + 𝛿

2
i

)
and 𝜁i=

√
Var

[
lnXi

]
=

√
ln

(
1 + 𝛿

2
i

)

are the parameters of the lognormally distributed Xi for i = 1, 2.

The sensitivities w.r.t. the correlation coefficient 𝜌 and the marginal distribution

parameters 𝜇i, 𝜎i, 𝜆i and 𝜁i for i = 1, 2 can be analytically derived. These sensitivities

have been assessed by symbolic calculation and, for the sake of concision, only the

expression of the sensitivity to correlation is given here:

𝜕𝛽

𝜕𝜌

=
𝛿

2 ln
(
𝜇1

𝜇2

)

(
1 + 𝜌 𝛿

2)
(
2 ln

(
1 + 𝛿

2

1 + 𝜌 𝛿
2

)) 3
2

. (31)

The sensitivity to correlation 𝜕𝛽∕𝜕𝜌 assessed numerically by the method

described in Sect. 3.1 is 2.4585, which is the exact value obtained from Eq. (31).

The sensitivities w.r.t. marginal distribution parameters 𝜕𝛽∕𝜕𝜃k are listed in

Table 4. The sensitivities assessed by the proposed numerical approach are obtained

as the sum of two terms 𝜶
T𝐋−1

0

(
𝜕z∕𝜕𝜃k

)
and 𝜶

T (
𝜕𝐋−1

0 ∕𝜕𝜃k
)
z, representing the

respective contributions of the two terms of Eq. (17). The sensitivities derived analyt-

ically and considered as reference values are also given for comparison. The sensitiv-

ities obtained by the present numerical approach and the reference ones are perfectly

matching. It also clearly appears that the contribution of second term of Eq. (17)

is not negligible w.r.t. the first one (it however does not contribute in 𝜕𝛽∕𝜕𝜆i for

i = 1, 2).

The importance of the𝜶
T (

𝜕𝐋−1
0 ∕𝜕𝜃k

)
z contribution in the sensitivities w.r.t. mar-

ginal distribution parameters have been further investigated for this specific example.

The ratio
(
𝜕𝛽∕𝜕𝜃k

)
2nd term only

over
(
𝜕𝛽∕𝜕𝜃k

)
both terms

(in absolute value and in per-

cents) as defined in Eq. (32) is represented in Fig. 1 as isocontours for 𝜌 ∈ [0.1, 0.9]
and 𝛿 ∈ [0.1, 1], 𝜇1 and 𝜇2 values remaining unchanged.

Table 4 Example 2: sensitivities to marginal distribution parameters

𝜕𝛽∕𝜕𝜃k Present approach
a

Analytical (reference)

𝜕𝛽∕𝜕𝜇1 0.5486 − 0.0301 = 0.5184 0.5184
𝜕𝛽∕𝜕𝜇2 −1.2122 − 0.1507 = −1.3629 −1.3629
𝜕𝛽∕𝜕𝜎1 −0.2849 + 0.0301 = −0.2548 −0.2548
𝜕𝛽∕𝜕𝜎2 −0.1061 + 0.1507 = 0.0446 0.0445
𝜕𝛽∕𝜕𝜆1b 1.3183 + 0.0000 = 1.3183 1.3183
𝜕𝛽∕𝜕𝜆2b −1.3183 + 0.0000 = −1.3183 −1.3183
𝜕𝛽∕𝜕𝜁1b −1.2743 + 0.2509 = −1.0234 −1.0234
𝜕𝛽∕𝜕𝜁2b −1.2743 + 0.2509 = −1.0234 −1.0234
a
In the second column, the two terms of the sum are the respective contributions of the two terms

of Eq. (17).

b
𝜆i = E

[
lnXi

]
and 𝜁i =

√
Var

[
lnXi

]
are the parameters of the lognormal distribution of Xi for

i = 2, 3
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Fig. 1 Example 2: ratio 𝜀
𝜃k
(𝜌, 𝛿) for 𝜃k = 𝜇i (top), 𝜎i (middle) and 𝜁i (bottom), i = 1, 2. The red

plain circle denotes the pair (𝜌, 𝛿) = (0.5, 1) studied in Sect. 4.2

𝜀
𝜃k
= 100

||||||||||

𝜶
T
𝜕𝐋−1

0

𝜕𝜃k
z

𝜶
T𝐋−1

0
𝜕z
𝜕𝜃k

+ 𝜶
T
𝜕𝐋−1

0

𝜕𝜃k
z

||||||||||

. (32)
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This ratio 𝜀
𝜃k
(𝜌, 𝛿) is plotted for 𝜃k = 𝜇i, 𝜎i and 𝜁i, i = 1, 2. From these plots, it

is found that the contribution of the second term in the computed sensitivities grows

with 𝜌 and 𝛿. For moderate coefficients of variation (say 𝛿 lower than 30%), the

contribution of this second term does not exceed 5%. A further analysis has been

conducted in order to investigate whether such conclusions could be generalized

to other types of distribution than the lognormal one. Accounting for this second

term is in fact only needed when at least one component of X has a distribution

belonging to Group 2 as defined by Liu and Der Kiureghian (1986a). As a reminder,

this group includes the lognormal, gamma, type-II largest value and type-III smallest

value distributions. When Xi belongs to Group 2, 𝜌0,ij (therefore 𝐑0) depends on the

coefficient of variation 𝛿i of Xi, see approximate expressions of F = 𝜌0,ij∕𝜌ij given in

Liu and Der Kiureghian (1986a). This implies a dependence of 𝐋−1
0 on the marginal

distribution parameters of Xi and, as a consequence, a non-zero sensitivity of 𝐋−1
0

w.r.t. to those parameters.

4.3 Example 3: A Three-Span, Five-Story Linear Elastic
Frame Structure Subjected to Lateral Loads

This reliability of a three-span, five-story, linear elastic frame structure subjected

to lateral loads is studied in this third example, see Fig. 2. This problem was pro-

posed by Liu and Der Kiureghian (1986b) and studied later in several works

(Bucher and Bourgund 1990; Wei and Rahman 2007; Most 2011; Blatman and

Sudret 2010; Gong et al. 2014). The problem has n = 21 random inputs: 3 applied

lateral loads, 2 Young’s moduli, 8 moments of inertia and 8 cross-sectional areas.

The frame element properties and the statistical properties of each component of

X taken in this study are given in Tables 5 and 6 respectively. Linear correlation is

considered between the following random inputs:

∙ loads: 𝜌Pi Pj
= 0.5 for i, j = 1, 2, 3, i ≠ j,

∙ material properties: 𝜌Ei Ej
= 0.9 for i, j = 4, 5, i ≠ j,

∙ moments of inertia: 𝜌Ii Ij = 0.13 for i, j = 6, … , 13, i ≠ j,
∙ cross-sectional areas: 𝜌Ai Aj

= 0.13 for i, j = 14, … , 21, i ≠ j,
∙ moment of inertias and cross-sectional areas: 𝜌Ai Ij = 𝜌Ij Ai

= 0.13 for i = 6, … , 13,

j = 14, … , 21, except for properties of a single frame element for which we have

𝜌Ai+8 Ii = 𝜌Ii Ai+8
= 0.95 for i = 6, … , 13.

Failure is considered when the horizontal displacement at node 1 exceeds 0.2 ft, see

Fig. 2. The LSF reads:

g (x) = g
(
x1, … , x21

)
= 0.2 − u1 (x) . (33)

Note that all the input data that are selected here are those of reference (Most 2011).

The same frame structure is studied in all the above mentioned references but it must
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Node 1

Fig. 2 Example 3: a three-span, five-story, linear elastic frame structure subjected to lateral loads

(from (Wei and Rahman 2007))

be pointed out that a few differences exist between the input data used in all these

works:

∙ Distribution type for loads P1−3: Rayleigh in Liu and Der Kiureghian (1986b),

Bucher and Bourgund (1990), Most (2011), Gong et al. (2014), lognormal in Wei

and Rahman (2007), Blatman and Sudret (2010).

∙ Distribution types for Young’s moduli E4−5, moments of inertia I6−13, cross-

sectional areas A14−21: normal in Liu and Der Kiureghian (1986b), Bucher and

Bourgund (1990), Wei and Rahman (2007), left-truncated normal in Blatman and

Sudret (2010) and lognormal in Most (2011), Gong et al. (2014).

∙ Coefficients of variation of P1−3: 0.5 for P1−3 in Most (2011), Gong et al. (2014),

0.3 for P1 and 0.4 for P2−3 in all the other references.

∙ Correlation of loads P1−3: no correlation in Wei and Rahman (2007), Blatman and

Sudret (2010), correlation of 0.5 in all other references.

∙ Maximal displacement at node 1 in the LSF: 0.2 ft in Liu and Der Kiureghian

(1986b), Bucher and Bourgund (1990), Wei and Rahman (2007), Most (2011), 4

to 9 cm in Blatman and Sudret (2010), 6 cm in Gong et al. (2014).

The results obtained with FORM are 𝛽 = 3.0340 and pFORM

f
= 1.2069 × 10−3.

The SORM approximations of the failure probability based on the asymptotic for-

mula of Hohenbichler and Rackwitz (1988) are respectively pSORM-cf

f
= 1.1228 ×

10−3 and pSORM-pf

f
= 1.1276 × 10−3 with the curvature fitting and point fitting



292 J.-M. Bourinet

Table 5 Example 3: frame element properties

Element Young’s modulus Moment of inertia Cross-sectional area

B1 E4 I10 A18

B2 E4 I11 A19

B3 E4 I12 A20

B4 E4 I13 A21

C1 E5 I6 A14

C2 E5 I7 A15

C3 E5 I8 A16

C4 E5 I9 A17

Table 6 Example 3: definition of marginal distributions of X
Component Xi Type of distribution Mean 𝜇

a
i Standard deviation 𝜎

a
i

P1 Rayleigh 30 9
P2 Rayleigh 20 8
P3 Rayleigh 16 6.40
E4 Lognormal 454, 000 40, 000
E5 Lognormal 497, 000 40, 000
I6 Lognormal 0.94 0.12
I7 Lognormal 1.33 0.15
I8 Lognormal 2.47 0.30
I9 Lognormal 3.00 0.35
I10 Lognormal 1.25 0.30
I11 Lognormal 1.63 0.40
I12 Lognormal 2.69 0.65
I13 Lognormal 3.00 0.75
A14 Lognormal 3.36 0.60
A15 Lognormal 4.00 0.80
A16 Lognormal 5.44 1.00
A17 Lognormal 6.00 1.20
A18 Lognormal 2.72 1.00
A19 Lognormal 3.13 1.10
A20 Lognormal 4.01 1.30
A21 Lognormal 4.50 1.50
aPi, Ei, Ii, and Ai are respectively in kip, kip/ft

2
, ft

4
and ft

2

(Der Kiureghian et al. 1987) methods. A solution has been obtained by subset sim-

ulation (SS) (Au and Beck 2001) with 106 samples per level. The failure probabil-

ity estimate considered as a reference solution is p
f ref

= p̂SS

f
= 1.13 × 10−3 with a

coefficient of variation of 0.8%. This result in excellent agreement with the one of

Ref. (Most 2011) confirms that this reliability problem is characterized by a unique
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MPFP with a nearly linear LSS, which makes the use of FORM appropriate here. The

sensitivities of 𝛽 to correlation with FORM are expressed in Eqs. (34–36). All the

other correlation sensitivities not given here are less than 0.01. From these results,

it appears that all the sensitivities to correlation are lower than zero. The lower the

correlation, the safer the frame structure. Moreover it is found that the two most

influential correlations are those between the loads P1 and P2, on the one hand, and

I11 and I12 (moments of inertia of B2 and B3 elements), on the other hand.

[
𝜕𝛽

𝜕𝜌ij

]

i,j=1−3
=

⎡
⎢
⎢
⎣

× sym

−0.18 ×
−0.06 −0.01 ×

⎤
⎥
⎥
⎦
, (34)

[
𝜕𝛽

𝜕𝜌ij

]

i,j=4−5
=

[
× sym

−0.06 ×

]
, (35)

[
𝜕𝛽

𝜕𝜌ij

]

i,j=6−13
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

×
0.00 ×
0.00 −0.01 × sym

0.00 0.00 −0.01 ×
0.00 −0.01 −0.01 −0.01 ×

−0.01 −0.02 −0.04 −0.02 −0.05 ×
−0.01 −0.02 −0.04 −0.02 −0.05 −0.12 ×
0.00 0.00 −0.01 0.00 −0.01 −0.03 −0.03 ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (36)

Sensitivities to marginal distribution parameters have also been assessed. The

normalized sensitivities
(
𝜕𝛽∕𝜕𝜃k

)
𝜃k where 𝜃k = 𝜇i, 𝜎i for i = 1, … , 21 are given in

Table 7. The results shows that the reliability of the frame structure is mostly sensi-

tive to the marginal distribution parameters of P1, E4 and E5. The sensitivities w.r.t.

the mean and standard deviation of the moments of inertia of the beam elements

have lower values, the most important ones being those of I11 and I12 (note that the

reliability was also sensitive to the correlation between these two inputs). The contri-

bution 𝜶
T (

𝜕𝐋−1
0 ∕𝜕𝜃k

)
z is negligible in all the computed sensitivities (contribution

of less than 2%) as expected from the conclusion drawn in Sect. 4.2.

4.4 Example 4: Crack Propagation Based on the Virkler Data

This last example presented by Bourinet and Lemaire (2008) addresses stochastic

crack growth by means of FORM and illustrates the importance of correlation in

such a context. All the calculations are based on the experimental data set obtained

by Virkler et al. (1979) and the well known Paris-Erdogan crack growth equation.

The experiment carried out by Virkler et al. (1979) consisted in recording the crack
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Table 7 Example 3: normalized sensitivities w.r.t. mean and standard deviation

Xi
(
𝜕𝛽∕𝜕𝜇i

)
𝜇i

(
𝜕𝛽∕𝜕𝜎i

)
𝜎i Xi

(
𝜕𝛽∕𝜕𝜇i

)
𝜇i

(
𝜕𝛽∕𝜕𝜎i

)
𝜎i

P1 −1.22 −1.93 E4 2.38 −0.18
P2 −0.11 −0.09 E5 1.31 −0.09
P3 −0.04 −0.03
I6 0.09 −0.00 A14 0.00 −0.00
I7 0.33 −0.02 A15 0.02 −0.00
I8 0.53 −0.03 A16 0.02 −0.00
I9 0.30 −0.02 A17 0.00 −0.00
I10 0.38 −0.06 A18 0.03 −0.01
I11 1.06 −0.21 A19 0.02 −0.00
I12 1.02 −0.20 A20 0.00 −0.00
I13 0.20 −0.03 A21 0.00 −0.00

Table 8 Example 4: statistical distributions of m and lnCa

Variable Type of

distribution

Mean Standard

deviation

Correlation

m Normal 2.855 0.166 −0.99795

lnC Normal −26.056 0.972
a
Units consistent with crack length in mm and stresses in MPa

growth trajectories of 68 samples at 164 equally-spaced measurement points, see

Fig. 3, left plot. The test samples were M(T) specimens made of 2024-T3 aluminum

alloy of 558.8 mm length, 152.4 mm width and 2.54 mm thickness. The crack was

grown from an initial crack length of 9 mm to a final length of 49.8 mm, after a

precycling crack growth started from a pre-machined central slit. These specimens

were all tested under constant amplitude fatigue loading at a maximum stress level

𝜎
max

= 48.36 MPa and a stress ratio R = 0.2.

For each of the 68 trajectories, a crack growth rate versus stress intensity factor

(SIF) range curve is obtained based on a 5-point moving least squares linear regres-

sion, see Fig. 3, right plot. From each of these curves, a pair of values (m, lnC) is

obtained by linear regression such that:

ln da
dN

= lnC + m ln ΔK. (37)

Table 8 gives the results obtained from a statistical analysis of the 68 pairs (m, lnC). It

is found that the normality hypothesis can be assumed both for m and lnC. Moreover

a linear correlation 𝜌 = −0.99795 (very close to −1) is observed between m and lnC
due to the linear regression that is used to find these two parameters. Note that these

statistical parameters are consistent with those of other Refs. (Ditlevsen and Olesen

1986; Kotulski 1998).
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Fig. 3 Example 4: crack length a versus number of cycles N (left)—finding m and lnC from crack

growth rate da∕dN versus SIF range ΔK curves (right)

For reliability assessment, failure is defined when the number of cyclesNr to reach

the final crack length a
f
= 49.8 mm of the Virkler experiment is lower than a given

target number of cycles denoted by Ns. The LSF is therefore expressed as follows:

g (x) = Nr (m, lnC) − Ns, (38)

where x =
(
x1, x2

)T = (m, lnC)T and where Nr is given by:

Nr (m, lnC) =
∫

a
f

a
i

1
C (ΔK)m

da, (39)

in which a
i

is the initial crack length, a
f
= 49.8 mm is the final crack length and

ΔK is the SIF range. For a constant-amplitude fatigue loading of M(T) specimens as

applied in the Virkler experiment, we have ΔK = K
max

(1 − R) where R = 0.2 is the

stress ratio and K
max

is the maximal SIF given by:

K
max

=
1 − 0.025 (a∕W)2 + 0.06 (a∕W)4

√
cos (𝜋a∕W)

𝜎
max

√
𝜋a (40)

where a is the current crack length, W = 152.4 mm is the width of the test specimen

and 𝜎
max

= 48.36 MPa is the maximum applied stress.

The following three test cases are defined for the subsequent reliability studies:

∙ Case #1: The initial crack length a
i
is considered as deterministic and equal to the

minimum crack size of the Virkler experiments, i.e. a
i
= 9 mm, and Ns is selected

as the average value between the 7th and 8th lowest numbers of cycles of the

Virkler tests: Ns = (237, 293 + 237, 794) ∕2 = 237, 543.5 cycles.

∙ Case #2: The initial crack length a
i

is considered as deterministic and equal to

4.4 mm. The target number of cycles Ns is set to 400, 000.
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Table 9 Example 4, problem 1: FORM results

Case #1 Case #2 Case #3

a
i

(mm) 9 4.4 Exp(1.5, 1.5)
Ns (cycles) 237, 543.5 400, 000 400, 000
𝛽 0.7600 1.8005 1.8399
pFORM

f
0.224 3.59 × 10−2 3.29 × 10−2

𝜕𝛽∕𝜕𝜌a −177.29 −368.22 −6.7092
a
𝜌 denotes the correlation between m and lnC

Fig. 4 Example 4,

problem 1, case #3:

reliability index 𝛽 versus

correlation coefficient 𝜌

between m and lnC

∙ Case #3: The initial crack length a
i
is assumed to be exponentially distributed with

a mean and a standard deviation both equal to 1.5 mm. The target number of cycles

Ns taken is 400, 000.

4.4.1 Problem 1

This first problem assumes that the random vector X is composed of the two corre-

lated normal variables m and lnC with distribution parameters given in Table 8 for

cases #1 and #2. The exponentially distributed random variable a
i

is added to X as

an additional component for case #3. The FORM results obtained for the three cases

are gathered in Table 9. When the stochastic model involves only m and lnC as ran-

dom inputs, a very strong sensitivity of 𝛽 to the correlation 𝜌 between m and lnC
is observed: −177.29 for case #1 and −368.22 for case #2. For illustration purpose,

lowering 𝜌 of 0.001 would approximately result in a reliability index increase of 0.18
and 0.37 for case #1 and #2 respectively. When the initial crack length is considered

as random (case #3), the FORM solution appears far less sensitive to 𝜌. Figure 4

represents how the reliability index 𝛽 evolves when 𝜌 is varied from −0.99795 to

−0.9. It clearly appears that the computed sensitivity 𝜕𝛽∕𝜕𝜌 = −6.7092 represents

the first-order derivative of 𝛽 at 𝜌 = −0.99795.

The failure probability of 0.224 obtained with FORM for Case #1 does not agree

in fact with the experimental data. From the definition of the target number of cycles

Ns, one would expect a failure probability in the range
[
7∕68, 8∕68

]
= [0.103, 0.118]
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since Ns is selected as the average value between the 7th and 8th lowest numbers of

cycles of the 68 Virkler tests. The origins of such a difference are investigated in

depth in Ref. (Bourinet and Lemaire 2008). First, it can be shown that the difference

is not explained by a nonlinearity of the LSS at the MPFP. A SORM analysis gives

pSORM-cf

f
= pSORM-pf

f
= 0.219 which is close to the FORM approximation (the LSS

is almost linear) and still far from [0.103, 0.118]. Moreover, it is found that a few

samples among the 68 ones of the experimental data set are not correctly classified

by the LSS of the selected model (defined by both its LSF g and its random vector

X), see Figs. 7 and 8 in Bourinet and Lemaire (2008). We can find some points with

an experimental number of cycles greater than Ns = 237, 543.5 that lie in the failure

domain ((M)T specimens #9, 23, 41, 54, 62, 63 and 66). Besides, the experimental

point corresponding to the first experimental test and characterized by a number of

cycles lower than Ns lies in the safe domain, although very close to the LSS, which

is not satisfactory too. All these issues are due in fact to an inaccurate representation

of the LSF, which results here in a slight underestimation of Nr and in fine in a quite

important overestimation of the failure probability. This issue is fixed in the sequel

by introducing an extra random variable representative of a model error, as described

in the subsections related to Problem 2 and 3.

4.4.2 Problem 2

In order to account for a slight underestimation of the number of cycles Nr obtained

numerically w.r.t. those found experimentally by Virkler et al., the LSF defined in

Eq. (38) is modified as follows:

g (x) = k Nr (m, lnC) − Ns, (41)

where x =
(
x1, x2, x3

)T = (m, lnC, k)T and k follows a Type-I largest value distrib-

ution (a.k.a. Gumbel distribution) with a mean equal to 1.027 and a standard devia-

tion equal to 1.91 × 10−2. This distribution is identified from a statistical analysis of

the ratios N(j)
exp∕Nr(m(j)

, lnC(j)) for j = 1, … , 68 where N(j)
exp is the number of cycles

of the jth M(T) specimen of the Virkler data set and (m(j)
, lnC(j)) are the 68 pairs

(m, lnC) identified from the experimental data. Note that k is assumed independent

from both m and lnC. The distributions of m and lnC are those defined in Table 8.

A linear correlation 𝜌 = −0.99795 is assumed between m and lnC.

FORM results with model error are given in Table 10 for cases #1 and 2. We can

easily show that the 8 (=7 + 1) experimental points that were misclassified with

Problem 1 are now correctly placed within the safe and failure domains, see Fig. 9

of Ref. (Bourinet and Lemaire 2008). The failure probability obtained by FORM is

now 0.137 and a SORM analysis gives 0.126, which becomes now rather close to the

expected 0.103 – 0.118 probability. Regarding sensitivities to correlation, the values
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Table 10 Example 4, problem 2: FORM results

Case #1 Case #2

a
i

(mm) 9 4.4
Ns (cycles) 237, 543.5 400, 000
𝛽 1.0947 2.0972
pFORM

f
0.137 1.80 × 10−2

𝜕𝛽∕𝜕𝜌a −241.62 −411.16
a
𝜌 denotes the correlation between m and lnC

obtained in this new problem are again quite high in absolute value (−241.62 for

case #1 and −411.16 for case #2). An alternative problem is proposed which in the

next subsection, which avoids such a high sensitivity to correlation.

4.4.3 Problem 3

We now express the linear regression of lnC on m as follows (Ditlevsen and Olesen

1986):

̂E [lnC|m] = E [lnC] + Cov [m, lnC]
Var [m]

(m − E [m]) , (42)

and we make use of the following residual which becomes uncorrelated with m:

𝜀lnC = lnC − ̂E [lnC|m] . (43)

The linear regression of lnC on m can be expressed from the 68 pairs (m, lnC)
identified from the Virkler data set. This linear regression reads:

̂E [lnC|m] = −5.8468m − 9.3623, (44)

and we therefore have:

𝜀lnC = lnC + 5.8468m + 9.3623. (45)

The distribution parameters of 𝜀lnC are inferred from the Virkler data set, see

values given in Table 11. The correlation between m and 𝜀lnC is close to zero

(−9.29 × 10−7) which now allows us to express the reliability problem in terms of

three independent random variables. The LSF with model uncertainty is rewritten in

the following form:

g (x) = k Nr (m, lnC) − Ns, (46)

where x =
(
x1, x2, x3

)T =
(
m, 𝜀lnC, k

)T
and lnC = 𝜀lnC − 5.8468m − 9.3623.
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Table 11 Example 4, problem 3: statistical distributions of m, 𝜀lnC and k
Variable Type of distribution Mean Standard deviation

m Normal 2.855 0.166
𝜀lnC Normal −1.20 × 10−6 6.22 × 10−2

k Gumbel 1.027 1.91 × 10−2

Table 12 Example 4, problem 3: FORM results

Case #1 Case #2

a
i

(mm) 9 4.4
Ns (cycles) 237, 543.5 400, 000
𝛽 1.1050 2.1076
pFORM

f
0.135 1.75 × 10−2

𝜕𝛽∕𝜕𝜌a −0.24 0.68
a
𝜌 denotes the correlation between m and 𝜀lnC

Results obtained by FORM are gathered in Table 12. The failure probabilities

with FORM and SORM are respectively equal to 0.135 and 0.124 for Case #1. These

results are almost identical to those obtained with Problem 2. The failure probability

obtained with SORM is again close to the [0.103, 0.118] expected range. The main

difference is that the reliability results are now insensitive to correlation. Near-zero

values are obtained for the sensitivity to correlation between m and 𝜀lnC.

5 Concluding Remarks

In the Nataf transformation, numerical integration can be conveniently applied to

define the matrix 𝐑0 but also its sensitivities w.r.t. to distribution parameters, includ-

ing both marginal distribution parameters and correlation coefficients. The sensitivi-

ties of the FORM solution (reliability index and associated failure probability) w.r.t.

to these distribution parameters can then be derived through a step-by-step differen-

tiation of the Cholesky decomposition algorithm. These sensitivities are exact in the

limits of the accuracy of numerical integration. Several application examples have

been presented in order to illustrate the use of these sensitivities in structural reli-

ability with a focus on those w.r.t. correlation. The information gained from these

sensitivities enable to rank these distribution parameters by importance, allowing a

better understanding of their roles in failure.
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Appendix: Determination of 𝐋𝟎 and 𝝏𝐋𝟎∕𝝏𝝆ij

1 // initialization
2 𝐀 =

[
aij

]
1≤i,j≤n = 𝐑0

3 d𝐀 =
[
daij

]
1≤i,j≤n =

𝜕𝐑0

𝜕𝜌ij

4 for k = 1 to n
5 dakk = dakk∕

(
2
√
akk

)

6 akk =
√
akk

7 for i = (k + 1) to n
8 daik =

(
daik akk − aik dakk

)
∕a2kk

9 aik = aik∕akk
10 end for
11 for j = (k + 1) to n
12 for i = j to n
13 daij = daij − daik ajk − aik dajk
14 aij = aij − aik ajk
15 end for
16 end for
17 end for
18 𝐋0 = tril (𝐀)

19
𝜕𝐋0

𝜕𝜌ij
= tril (d𝐀)

Note: tril (𝐌) extracts the lower triangular part of a matrix 𝐌.
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Using FORM for Minimizing
the Uncertain Cost of Structural Designs

Terje Haukaas and Stevan Gavrilovic

Abstract This chapter demonstrates the use of the first-order reliability method
(FORM) for minimizing expected cost, when the cost is a continuously differen-
tiable function of many random variables and models. The models include con-
struction cost and cost of damage, and typically a finite element model. Assuming
these costs are non-negative, the expected cost is the area underneath the com-
plementary cumulative distribution function on the positive cost axis. Points on this
distribution function are determined by FORM and numerical integration is
employed to calculate the area. Exact derivatives of responses and costs with
respect to random variables are propagated through the models and used in FORM.
Moreover, exact derivatives of responses and costs with respect to design variables
are propagated through FORM in order to have exact derivatives of the expected
cost available in the optimization analysis. This framework for minimizing expected
cost is implemented in a computer program and illustrated by means of a
demonstration example.

1 Introduction

This chapter is written as a tribute to Professor Armen Der Kiureghian on the
occasion of the symposium organized in his honor at the University of Illinois at
Urbana-Champaign on October 4–5, 2015. Professor Der Kiureghian is a pioneer in
the development of reliability methods and other probabilistic methods, and his
contributions still stand as the state-of-the-art in the field. Among many examples
are the Nataf transformation (Liu and Der Kiureghian 1986) and the gradient-based
algorithm for determining curvatures in the second-order reliability method (Der
Kiureghian and De Stefano 1991). The objective of this chapter is to demonstrate
how FORM has important uses today, even for new problems without classical
limit-states. As such, this contribution can perhaps informally be considered an
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extended term paper in Professor Der Kiureghian’s famous reliability course CE
229 Structural and System Reliability at the University of California at Berkeley,
submitted perhaps a bit late.

The context of this chapter is performance-based earthquake engineering. That
means the emphasis is placed on cost rather than stresses and displacements. One
paper that develops and demonstrates a popular performance-based methodology is
co-authored by Professor Der Kiureghian (Yang et al. 2009). Figure 7 in that paper
shows a key indicator of performance: the “loss curve,” i.e., the rate of exceedance
of a range of dollar values. A shift of the loss curve towards lower cost implies a
better design.

Traditional limit-state design is usually part of the structural engineers’ con-
siderations even for structures subjected to performance-based engineering. How-
ever, in this chapter the focus is solely on performance-based engineering and the
loss curve. Consequently, no limit-states appear at first. The objective is solely to
identify the structural design that gives the “best” loss curve. The first author of this
chapter made initial observations on this problem in two conference papers
(Haukaas 2013; Haukaas et al. 2013). The present chapter presents an extension of
that work.

2 Methodology

The loss curve mentioned above is essentially a complementary cumulative dis-
tribution function for the uncertain loss, i.e., monetary cost, which is a non-negative
continuous random variable. Figure 1 is a schematic visualization of a generic loss
curve; the probability of exceeding a cost threshold, c, is denoted p. The specific
thresholds ci and probabilities pi, and the increment Δc, will be explained later.
Usually the loss curve does not conform to any standard distribution type but partial
descriptors of the distribution can be computed by sampling or other techniques.

In the abovementioned paper by Yang et al. (2009) the criteria by which a
structural design is judged is the area underneath the loss curve in the positive
portion of the loss axis. It can be shown that this area is the mean annual frequency
when the ordinate of the loss curve is given as annual rate of exceedance, and that

p

c
Δc

pi

ci

Fig. 1 Schematic loss curve
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the area is the expected loss when the ordinate of the loss curve is given as
probability of exceedance. An informal proof in the latter case is

μc =
Z∞

0

c ⋅ f ðcÞdc= −
Z∞

0

c ⋅
GðcÞ
dc

dc= − c ⋅GðcÞ½ �∞0 +
Z∞

0

1 ⋅GðcÞdc=
Z∞

0

GðcÞdc

ð1Þ

where f() is the probability density function and G() is the complementary cumu-
lative distribution function.

The use of expected loss, i.e., the mean of the cost, as the criterion for design
optimization has roots dating back hundreds of years. It is almost 280 years since
the use of expected cost as a decision criterion was extended with the concept of
nonlinear utility functions to incorporate risk averseness (Bernoulli 1738). In fact, it
is more than 70 years since the formal underpinning for making decisions in this
way was established (von Neumann and Morgenstern 1944). The present chapter
essentially employs a linear utility function, resulting in expected cost minimiza-
tion, and other decision models, such as minimizing high costs, are not explored
here.

The analysis conducted by Yang et al. (2009) was focused on the estimation of
repair costs due to earthquake ground motion. For that reason their loss curve
contains contributions from repair costs only. In contrast, this paper includes the
cost of construction or seismic retrofit, which makes it possible to explore an
optimum design. Without the inclusion of the construction cost the best design
would be a fortress invulnerable to ground motion. Conversely, with the inclusion
of construction cost the expected loss is a convex function of design variables, such
as structural dimensions. The result is a convex optimization problem: small
dimensions will lead to high repair costs after an earthquake; large dimensions may
lead to high construction costs.

Several methods are available for the calculation of the expected cost, i.e., the
area underneath the loss curve. The following limitation must here be understood:
models are available for evaluating the loss for given realizations of the intervening
random variables but the distribution itself is not available. This implies that first-
and second-order approximations based on a Taylor expansion of the cost with
respect to the random variables (Ang and Tang 2007) is one option. However, a key
concern with those approaches is potentially inaccurate estimates of the mean cost.
Another option is Monte Carlo sampling from which the mean can estimated. The
problem with that approach is that accurate derivatives of the expected cost are
unavailable for the subsequent optimization analysis. A third option, based on
FORM, addresses both those concerns and is explored in this chapter.

Suppose a FORM analysis is conducted at each cost-threshold, schematically
shown in Fig. 1, with the limit-state function

Using FORM for Minimizing the Uncertain Cost… 305



gðxÞ= ci − cðxÞ, i=1, 2, . . . ,N ð2Þ

where x is the vector of random variables that enter into the models that are
employed to calculate the cost c(x), ci are the cost thresholds, and N is the number
of thresholds. The result of each analysis is the probability, pi, of the cost exceeding
the threshold ci. Numerical integration can be performed, for instance using the
trapezoidal rule:

E½c�≈ μFORMc = ∑
N

i=1

pi+1 + pið Þ
2

⋅ ci+1 + cið Þ, i=1, 2, . . . ,N ð3Þ

where c1 = 0 and hence p1 = 1, while cN is assumed to be sufficiently high so that
pN is essentially zero. This is an issue related to the selection of the thresholds, ci,
which is addressed next.

3 Cost Thresholds

The accuracy of Eq. (3) depends on the selection of the thresholds ci. More
thresholds in the cost range where the probabilities are non-zero implies higher
accuracy but also higher computational cost. Another challenge is that it is not
known a priori which cost values are associated with substantial exceedance
probabilities.

One approach to address the latter challenge is to conduct a Monte Carlo
sampling analysis with a few hundred samples to obtain estimates of the mean and
standard deviation of the cost. Then an array of cost thresholds can be laid out in the
cost range that will give substantial contributions to Eq. (3). However, this
approach is problematic because the mean and standard deviation of the cost can
change significantly from one design to another. Hence, the thresholds that are ideal
for calculation of the mean cost of the first design may not be suitable for subse-
quent trial designs. The idea of repeating the sampling for each design is not
adopted because that prevents the calculation of exact derivatives of Eq. (3); it
would not be possible to analytically tell how a sampling-based threshold value
changes due to a change in a random variable realization.

To ensure the availability of exact derivatives an infinite number of cost
thresholds is laid out, spaced Δc apart, starting at c1 = 0, so that

ci = ði− 1Þ ⋅Δc, i=1, 2, . . . ,N ð4Þ

The thresholds in Eq. (4) remain fixed throughout the optimization analysis, but
not all thresholds are “active” and different thresholds are active for different
designs. In fact, the FORM analyses to compute pi do not commence at c1 because
many of the low-cost thresholds may be associated with pi ≈ 1. The approach
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adopted in this paper is to first compute the first-order second-moment approxi-
mation of the mean cost,

μFOSMc = cðMxÞ ð5Þ

where Mx is the mean vector for the random variables x. The result in Eq. (5) is
readily obtained but as mentioned earlier it may be an inaccurate estimate of the
mean cost. Starting at the threshold immediately above μFOSMc a FORM analysis is
conducted followed by a FORM analysis at the next threshold above, etc. until the
computed probability is sufficiently small. Next, a FORM analysis is conducted at
the threshold below and nearest μFOSMc followed by a FORM analysis at the next
threshold below, etc. until the computed probability is sufficiently close to unity.

That procedure is visualized in Fig. 2, where the cost thresholds are numbered
by the order in which they are analyzed by FORM. These numbers are not the same
as i = 1, 2, …, N above. The loss curve in Fig. 2 is obtained with the computer
program Rts, which is an extension of the computer program Rt (Mahsuli and
Haukaas 2013). Details of the examples analyzed with Rts are provided later in this
chapter. The mean cost for the loss curve in Fig. 2 is calculated by the following
modified version of Eq. (3):

Threshold nearest the first-order 
approximation of the mean, hence 
first to be analyzed 

Cost thresholds 
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at i=Nl

Threshold
at i=Nh

Fig. 2 Loss curve from analysis with the computer program Rts
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μFORMc =Nl ⋅Δc+ ∑
i=Nh

i=Nl

pi+1 + pið Þ
2

⋅Δc ð6Þ

where Nl is the value of N at which the probability is sufficiently close to unity and
Nh is the value of N at which the probability is sufficiently close to zero. In Eq. (6),
the second term is the contribution to the mean from the area under the curve in
Fig. 2. The first term is the contribution from the origin, i.e., i = 0, to where the
curve in Fig. 2 starts. To select Nl and Nh a tolerance probability ptol is employed.
Specifically, Nl identifies the first cost threshold at which the probability is above 1-
ptol and Nh identifies the first cost threshold at which the probability is below ptol.
Obviously other integration schemes can be thought of but Eq. (6) may give a sense
of how FORM results are employed to calculate the mean cost.

The variables in the integration scheme in Eq. (6) are ptol and Δc. A value of ptol
around or somewhat below 0.01 has given good results in analyses run thus far. The
selection of Δc can be more challenging because the standard deviation of the cost
may change substantially from one design to another. As a result, one value of
Δc may give sufficiently many cost thresholds for one design but not for another.
This was not a problem in the analyses conducted here, but several strategies for
selecting Δc can be envisioned. One is to select Δc “very small” and let intermittent
cost thresholds be active for different designs. Another approach is to use first-order
second-moment approximations of the mean and standard deviation of the cost to
distribute the thresholds. The important point is that if the cost thresholds move
then that must be accounted for in the calculation of the derivative of the expected
cost. The calculation of gradients is addressed in a subsequent section.

4 Warm Starts in FORM

Each of the 17 FORM analyses that are carried out to obtain the results shown in
Fig. 2 requires several evaluations of the cost, for different realizations of the
random variables. In other typical applications the convergence of one FORM
analysis requires about 3–10 evaluations of the limit-state function. However, the
number of cost evaluations can be reduced when running consecutive FORM
analyses like those visualized in Fig. 2. Instead of restarting the search for the
design point in FORM from the same random variable realization every time the
FORM algorithm can be restarted the previous design point.

The saving in computational cost with that strategy is understood from Fig. 3,
which displays results obtained with Rts. The vertical axis in both graphs is the
distance from the origin in the standard normal space to the trial points of the
FORM algorithm. The horizontal axis is the iteration number of the FORM algo-
rithm. The two graphs in Fig. 3 show the trial points from two different FORM
analyses. The graph with more trial points is the result from the first FORM analysis
at Point 1 in Fig. 2. The graph with less trial points show the typical result for

308 T. Haukaas and S. Gavrilovic



subsequent FORM analyses. The latter start at a distance relatively far from the
origin and converge with only three evaluations of the cost, signifying a substantial
computational cost saving in each FORM analysis. The question whether additional
cost evaluations are needed to obtain the gradient vector used in the FORM
algorithm is addressed in the next section.

5 Exact Gradients

Professor Der Kiureghian is a pioneer in the derivation and implementation of exact
derivatives using the direct differentiation method (Zhang and Der Kiureghian
1993). An important feature of the methodology outlined above is that exact
derivatives are propagated through all the intervening models, from finite element
analysis through FORM and to the optimization analysis. This means that the exact
evaluation of the gradient

First FORM analysis 

Typical result for subsequent FORM analyses 

Fig. 3 FORM convergence
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∇c=
∂cðxÞ
∂x

ð7Þ

is available for the FORM analysis and that the gradient

∇μFORMc =
∂μFORMc

∂v
ð8Þ

is available for the optimization analysis, where v are design variables, such as
structural dimensions. The exact derivatives are implemented in Rts to run the
examples presented below. Differentiation of Eq. (3) yields, due to the fixed cost
thresholds,

∂μFORMc

∂v
= ∑

i=Nh

i=Nl

1
2
⋅

∂pi+1

∂v
+

∂pi
∂v

� �
⋅Δc ð9Þ

From FORM, the derivatives of the probabilities are (Der Kiureghian 2005):

∂p
∂v

=
∂p
∂β

∂β

∂c
∂c
∂v

=φðβÞ ⋅ 1
∇Gk k ⋅

∂c
∂v

ð10Þ

because

∂p
∂β

=
∂

∂β
Φð− βÞð Þ= −φðβÞ ð11Þ

and

∂β

∂c
=

1
∇Gk k ⋅

∂g
∂c

����
x*
=

1
∇Gk k ⋅

∂ðci − cðx, vÞÞ
∂c

����
x*
= −

1
∇Gk k ð12Þ

The derivatives ∂c ∂̸v are available in exact form also when finite element
models are employed to determine the cost (Haukaas and Der Kiureghian 2005).
Figure 4 provides an overview of the propagation of gradients through the model
framework. The focus in this chapter is on the three right-most models: FORM,

Repair cost 
model 

Construction cost model 

Risk 
model 

Optimization 
model 

p
∂p
∂v

c FORM 
model 

μ
∂μ
∂v

∂c
∂v

, ∂c
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model 

v,x

r
∂r
∂v

, ∂r
∂x

Fig. 4 Propagation of exact derivatives
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Risk, and Optimization. The FORM model takes the total cost, c, as input and
provides the exceedance probability, p, as output. The FORM model uses the
derivative of c with respect to the random variables, x, to achieve convergence. The
Risk model repeatedly calls the FORM model to calculate the area underneath the
loss curve, i.e., the mean μ. The Risk model accumulates and conveys the derivative
of c with respect to the design variables, v, from FORM to the Optimization model.
The Optimization model minimizes μ using those derivatives.

6 Demonstration Example

A simple and transparent example is selected to demonstrate the methodology
presented above. Consider a simply supported beam subjected to a point load, P, at
mid-span. The beam has length L and its rectangular cross-section has height h and
width b. The parameters L, b, and P are random variables and h is the design
variable. The characteristics of the random variables are provided in Table 1.

The construction cost is formulated proportional to the volume of the beam:

cconstr = b ⋅ h ⋅ L ⋅ θ1 ð13Þ

where θ1 = 10−5$/mm3 is a model parameter to translate beam volume into dollar
cost. The repair cost is formulated proportional to the maximum stress in the beam,
which is the bending moment over the cross-section modulus:

crepair =
3 ⋅P ⋅ L
2 ⋅ b ⋅ h2

⋅ θ2 ð14Þ

where θ2 = 103$/MPa is a model parameter to translate stress into dollar cost.
The objective of the analysis is to minimize the expectation of the total cost, i.e.,

to minimize

minfμcg=minf E½cconstr + crepair� g=min
Z∞

0

GðcÞdc
8<
:

9=
; ð15Þ

where the detailed cost models, including discount rates and other factors, are
outside the scope of this chapter, and G(c) was defined earlier as the complementary
cumulative distribution function of the cost. That function is displayed in Fig. 5a

Table 1 Characteristics of
the random variables in the
demonstration example

Distribution Mean Coefficient of variation (%)

L Lognormal 2.0 m 10
b Lognormal 0.2 m 10

P Lognormal 5 kN 10
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for the beam height h = 0.5 m, which is used as initial value for the design vari-
able. The value of the mean for this loss curve according Eq. (6) is $2,294.77 with
Δc = $20 and ptol = 0.05. Reducing ptol from 0.05 to 0.0001 yields more points in
the tails, as shown in Fig. 5b and improves the mean estimate to $ 2,298.01. A less
extreme value ptol = 0.001 yields $2,297.94.

The results shown above are produced with the computer program Rts, which is
an extension of the program Rt (Mahsuli and Haukaas 2013) with finite element
analysis. The models that are sketched in Fig. 4 are implemented in Rts and Fig. 6
is a screenshot of Rts after convergence of the optimization analysis. The left-most
and bottom-most parts of the screen are dedicated to input and output in text form.
The main visualization area in the upper-right contains three plots, which are cre-
ated at run-time. The largest plot shows the loss curve at the optimum design
h = 335.02, at which the expected cost is $2,004.03. The convergence towards
those optimal values is shown in the lower right plot, with the evolution of the
objective function, i.e., the expected cost plotted in blue and the evolution of the
design variable value plotted in red. The upper right plot shows the evolution of the
last FORM analysis as explained earlier in the context of Fig. 3. In short, Fig. 6
shows the result of the optimization analysis with the example presented in this
section.

Fig. 5 Initial complementary cumulative distribution function for the total cost
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7 Conclusions and Ongoing Studies

A simple example was presented in this paper to illustrate a methodology intended
for minimizing the expected cost of more complex building models. The focus on
cost is aligned with recent advances in performance-based engineering, and the
fundamental idea is that several costs, which depend on many models and random
variables, are summed and its mean is minimized. Because a variation in the design
variables will make some costs go up and other down, the expected cost is under
certain circumstances a convex function suitable for gradient-based optimization.

Several tasks are addressed in ongoing research to go from simple examples to
realistic analyses. One task is the creation of information-rich structural models
from building information models used in other disciplines of the construction
industry. Industry foundation classes are employed as the language by which the
information is imported and exported to and from the structural model. The
structural model includes non-structural components and content in order to
improve cost estimates for damage due to ground shaking, etc.

A related line of research is the creation of detailed models for costs, including
construction cost, repair cost, environmental impact cost, downtime cost, and cost
of injuries and fatalities. Without comprehensive modeling of hazards and costs the
optimization results have limited value.

Other issues being addressed are the feasibility and accuracy of various methods
to calculate the expected cost, or other measures of risk, and the feasibility of
various optimization algorithms for different problems. The example presented in

Fig. 6 Screenshot of the computer program after convergence of the optimization analysis
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this paper is linear elastic with a well-behaved convex objective function. The
inclusion of inelastic material behavior, stochastic loading processes, and a
life-cycle scope is more challenging and addressed in ongoing studies.
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Part V
Statistical Analysis and Probabilistic

Models



Model Checking After Bayesian Inference

Matteo Pozzi and Daniele Zonta

Abstract Bayesian analysis provides a consistent logical framework for processing
data, inferring parameters and estimating relevant quantities in engineering prob-
lems. However, its outcomes are valid conditional to the specific model assump-
tions. Whether these assumptions are questioned, possibly because of some factors
knowingly left out, they can be checked by further analysis of the available
empirical data. Again, this can be done inside the Bayesian framework, by prob-
abilistically comparing expanded models with the original one; however, this may
be computational impractical in many applications. Test statistics and p-value
analysis, historically developed under the frequentist approach but adapted to the
Bayesian setting, provide an alternative for model checking coupled with proba-
bilistic inference. In this chapter, we illustrate the relation between p-value analysis
and Bayesian model comparison: after presenting it in a general context, we focus
on Gaussian linear models under known perturbation, for which this relation can be
stated in close formulas, and explore an example outside that domain.

1 Introduction

A key task in engineering analysis is to infer the value of relevant quantities by
using a probabilistic model. This model is selected based on expert judgement,
physical principles and past empirical observations, and the outcome of the
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inference process intrinsically depends on it. Further empirical observations offer
the opportunity to confirm, revise or reject a candidate model. Bayesian analysis
provides a consistent framework to process those observations for model updating
and comparison, in the assumption that the set of possible models is exhaustive. In
principle, if we could include the complete set in our computational framework, by
way of logic we should accept the outcome of the probabilistic inference. In
practice, defining a truly exhaustive set of hypotheses is computationally unfeasible
in all but highly simplified settings, and agents often leave, more or less con-
sciously, possible alternatives out of the quantitative inference process. Because of
this, an agent can question the adopted modelling assumptions and, consequently,
the outcome of the analysis: whether the computational model is just an incomplete
formalization of the agent’s belief, refusing to check it will expose her to the risk of
being an “overconfident” Bayesian (Morey et al. 2013).

From a Bayesian perspective, a model is judged as good or bad only in comparison
with others. Therefore, formal explicit model checking always requires definition of
alternative candidates. However, model checking often follows an implicit practise,
based on detecting symptoms that seems in conflict with the assumptions, and
deciding to adjust them. p-value analysis provides a quantitative formal procedure for
this practice: originally proposed in the frequentist framework, it has been adapted for
Bayesian model checking, both in the prior and posterior setting, as proposed by
Box (1980), Meng (1994), Gelman et al. (1996, 2014), and discussed by Bayarri and
Berger (2000), Kruschke (2013), Morey et al. (2013). By selecting appropriate test
statistics, the agent checks her assumptions against possible factors left out of the
original setting, and the test outcome can be taken as guidance to confirm or revise that
setting. A recent example of test-based checking in engineering analysis is “model
falsification”, as presented by Goulet et al. (2013), Pasquier and Smith (2015).

In this chapter, we illustrate the relation between p-value analysis and Bayesian
model comparison: despite the two procedures look different, it is possible to relate
them analytically. As a result, executing a test on a model can be intended as comparing
that model with an alternative, specific one. Appropriate tests can assess complicate
model assumptions (e.g., a specific noise distribution, the linearity of the response, etc.).
However, we start focusing on the simple context of Gaussian linear models under a
known possible perturbation, where the equivalence can be shown in close formulas, so
that we can identify an appropriate test for comparing the model against a specific
alternative, or identify an alternative model implicitly compared by a specific test. In
other, more complex contexts, it is not easy to derive these equivalences.

The rest of the chapter is organized as follows. In Sect. 2, we provide a recap on
Bayesian model comparison and checking, while in 3 we introduce statistical tests
and p-value analysis, discussing prior and posterior model checking. In Sect. 4, we
clarify the equivalence between Bayesian model checking and p-value analysis,
providing closed form equivalence in the context of Gaussian linear models pos-
sibly affected by a known perturbation. These findings are illustrated with
numerical examples in Sect. 5, while in Sect. 6 we investigate numerically the
possibility of extending these findings outside the Gaussian linear setting. Some
concluding remarks are reported at the end of the chapter.
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2 Model Checking Using Bayesian Inference

The general problem on discussion in this chapter can be formally stated as follows.
Consider a candidate model M and some empirical observations y ̃: is the model
appropriate for processing those data and assessing the value of relevant quantities?
What is the criterion whereby we accept (validate) or reject (falsify) it? In this
section we recap how model checking should be performed within a Bayesian
logical framework.

2.1 Inference Within a Single Model

We start reviewing Bayesian inference inside modelM. Parameter set θ, on domain
Ωθ, is defined by a prior probability p θjMð Þ, while observable data (i.e. “mea-
sures”) y are related to the parameters by a likelihood function p yjθ,Mð Þ. Pre-
dictive distribution of data is given by:

p yjMð Þ=
Z
Ωθ

p yjθ,Mð Þp θjMð Þdθ ð1Þ

while posterior distribution by Bayes’ rule:

p θjy,Mð Þ= p yjθ,Mð Þp θjMð Þ p̸ yjMð Þ ð2Þ

The overall goal of the analysis may be the inference on parameters, or to
compute the expected value of a function f θ,Mð Þ, that depends of model and
parameter: its corresponding prior and posterior values are:

𝔼 f Mj½ �= R
Ωθ

f θ,Mð Þp θjMð Þdθ
𝔼 f y,Mj½ �= R

Ωθ

f θ,Mð Þp θjy,Mð Þdθ

8><
>: ð3Þ

Figure 1a reports a basic probabilistic graphical model for this case. In reliability
analysis, for example, function f is usually the indicator of a relevant event, e.g. a
structural failure. When model M is assumed, formally f is a binary variable
defined as f = I g θ,Mð Þ½ �, where I is the indicator function and g θ,Mð Þ is the limit
state function according to model M. Equation 3, and can be re-written in the form
of prior and posterior reliability integrals (Der Kiureghian 2005).
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2.2 Comparison of Models

Bayesian analysis is suitable for explicitly comparing models within a set, stated a
priori. Assume that M mutually exclusive and exhaustive models are possible, and
indicate with S their corresponding assumptions. The discrete prior distribution
P mjSð Þ assigns the probability to model m on domain 1, . . . ,Mf g. Now both prior
distribution, likelihood and function f depends on index m, and Eqs. 1–3 can be
re-written using indicator m instead of M. Global predictive distribution is:

p yjSð Þ= ∑
M

m=1
p yjmð ÞP mjSð Þ ð4Þ

and updated model probabilities are:

P mjy,Sð Þ= p yjmð ÞP mjSð Þ p̸ yjSð Þ ð5Þ

This approach is generally referred to as “model comparison”, illustrated by
Bretthorst (1996), Jaynes (2003), MacKay (2003) and applied to engineering
problems by Beck and Yuen (2004), Zonta et al. (2008), Yuen (2010) Zonta and
Pozzi (2015), Wang et al. (2016). Finally, prior and posterior expected value of
f now reads:

𝔼 f Sj½ �= ∑
M

m=1
𝔼 f mj½ �P mjSð Þ

𝔼 f y,Sj½ �= ∑
M

m=1
𝔼 f y,mj½ �P mjy,Sð Þ

8>><
>>: ð6Þ

Figure 1b reports the corresponding graph.

(a) (b)

Fig. 1 Probabilistic graphical model for a a single model inference and prediction and b for
multi-model inference and prediction
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2.3 Rejecting a Model by Computing Its Posterior
Probability

A special case of model comparison is that where set S include just two models:
candidate model M and its alternative A, which overall encodes all credible
options not incorporated inM. In other words, we are assuming that observations y
are either the outcome of the candidate model M or the outcome of something else,
which we make explicit through alternative model A. In this setting, we can rewrite
Eq. 5 as:

P Mjyð Þ= p yjMð ÞP Mð Þ
p yjMð ÞP Mð Þ+ p yjAð Þ 1−P Mð Þ½ � ð7Þ

highlighting how the posterior distribution of M depends on its prior probability
and the prediction distributions of the measures under M and A. In this setting, we
assume the agent starts assuming model M (or even a hierarchical model defined
by set S, with obvious adjustments in the notation). However, she believes that that
option is not the only possible and considers an alternative model A. If the posterior
probability of M is sufficiently high, she can neglect model A as if this latter
hypothesis was disproven by the data. In this case, she is “accepting” model M
and, consequently, she can base her estimate of f, if this is the goal of the analysis,
on Eq. 3. On the other hand, if that posterior probability is not high enough, she
should use Eq. 6, to avoid the bias due to an incomplete model set: we call this
decision “rejecting” model M. We note that, practically, the problem is relevant
when the expectation of f given A is significantly different respect to that given M.
When alternative model A is explicitly available, that decision can be based on
Eq. 7: if the posterior probability is below threshold P̄, the agent rejects M.

3 Prior and Posterior Model Checking Using p-Value
Analysis

p-value analysis provides an alternative path to model checking. In this framework,
the agent defines a function T of the data, usually called a “test statistic”. By
transforming the predictive distribution of the measure, p yjMð Þ, through function
T yð Þ, we get the predictive distribution of the statistic, p TjMð Þ. The model is
rejected when T is above a selected threshold T ̄ or, equivalently, when the prob-
ability of M to generate values of T above the observed one (usually called the “p-
value”) is too low, say under threshold . While in orthodox statistic the model is
calibrated by fixing a value for inner parameters θ, in prior model checking related
to Bayesian analysis θ is a random variable modeled by its prior distribution, and
measures are predicted by Eq. 1.
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For computing the p-value, we introduce variable y0 as a replicate of the mea-
sure, with the same predictive distribution under M, and T ′ = T y′

� �
as the corre-

sponding statistics. We want to compute the probability that random variable T
0
is

above T ̃= T y ̃ð Þ, where y ̃ indicates the observed data. This is the so-called “prior p-
value”, . Formally, we can define binary variable q= I T ′ >T ̃

� �
, and refer to the

graphs in Fig. 4. In graph (a), parameters θ are not related to the observed data, so
the prediction of T

0
relies on the prior model only, and is defined as:

ð8Þ
or, equivalently, where Fπ is the cumulative distribution corre-
sponding to p TjMð Þ.

The test can also be defined a posteriori, making use of the posterior distribution
computed in Eq. 2, and graph (b) is related to the so-called “posterior p-value”
(Meng 1994; Gelman et al. 1996; 2014): parameter θ and observation y are now
related, and the prediction is based on the posterior distribution:

ð9Þ

where the corresponding predictive distribution for the replicate measures is:

p y′jy ̃,M� �
=

Z
Ωθ

p y′jθ,M� �
p θjy ̃,Mð Þdθ ð10Þ

Again, posterior p-value can be express as where Fω ỹj is the
cumulative distribution corresponding to p T ′jy ̃,M� �

.
Generally, by using a unique functionT, prior and posterior checking cannot define

identical rejection regions, even when the threshold of the corresponding the p-values
is calibrated ad hoc. However, the rejection decision based on function T and p-value
threshold in the prior setting is consistent with that in posterior checking, based on
the p-value threshold and function Tω defined appropriately, e.g. as follows:

ð11Þ

where now we use Fω y ̃j for referring to the cumulative distribution corresponding to
replicate p T ′

ωjy ̃,M
� �

. While it may be hard to solve Eq. 11, it formally shows the
equivalence condition for prior and posterior model checking. However, by reading
Fig. 2, it is straightforward to give different meanings to prior and posterior
checking: in the prior setting, we evaluate the probability that the prior model,
before the updating, generate higher values of the statistic (respect to the observed
one), while in the posterior setting we evaluate this probability for the updated
model. These alternatives are also related to different computational complexity
levels, the evaluating of the posterior p-value being generally harder.

The structure of Eqs. 8–9 closely resembles that of Eq. 3. Because of this, a
wide range of numerical methods can be used for solving both problems, including
Reliability Methods as FORM or SORM (Der Kiureghian 2005) and Monte Carlo

322 M. Pozzi and D. Zonta



methods (Beck and Au 2002). Specifically, the computation of the posterior p-value
can be performed via Monte Carlo Markov Chain, also including Reliability
Methods (Straub et al. 2016). Moreover, in Fig. 3b we have included the node
representing f, to highlight how posterior model checking can be computationally
“coupled” with the posterior probabilistic evaluation, as the posterior distribution of
θ is relevant both in Eq. 3b and in Eq. 10. Hence, one could target the problems of
evaluating the posterior p-value and the posterior expectation of f (e.g., a failure
probability), with a single optimized numerical approach.

Practically, the scope of test-based model checking is humbler than that
described in Sect. 2: if M is rejected, the agent will investigate how to improve the
model, without pretending to obtain, as an outcome of the analysis, the complete
model set A,Mf g, and the corresponding posterior probabilities.

4 Bayesian Selection of Test Statistic

4.1 Bayesian Model Comparison Versus p-Value Analysis

In the previous sections, we have reviewed two ways to perform probabilistic
model checking: using Bayesian model comparison and p-value analysis. We have
seen that, in strict Bayesian terms, accepting/rejecting a candidate model M
requires definition of an alternative model, and decision is based on the calculation

(a) (b)

Fig. 2 Probabilistic graphical models for computing prior a and posterior b p-values

accept 

reject 

accept reject

(a)
(b)

Fig. 3 Pictorial representation of the decision process about accepting/rejecting model M, using
Bayesian model comparison a and test-based prior checking b
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of its posterior probability. On the other hand, in p-value analysis the candidate
model is accepted/rejected regardless any explicit alternative model, on the ground
of a test statistic. Apparently, the two approaches are incompatible and, not sur-
prisingly, there is a long-standing debate between, say, “radical” and “moderate”
Bayesians, with radicals insisting on the logical inconsistency of test statistics and
moderates more keen to accept them, under appropriate conditions; a debate which
is well represented in the Gelman and Shalizi’s paper (2013) and Kruschke’s (2013)
and Morey et al. (2013) commentaries.

Here we do not enter in this discussion; we just observe that, using either one
approach or the other, the outcome of the model checking is always conditional to
some assumptions: the alternative model A in Bayesian model checking; the test
statistic T in p-value analysis. When these quantities are in a specific relation among
themselves, the model checking based on p-value analysis is, in fact, fully equiv-
alent to that based on the Bayesian model comparison. Figure 3a provides a pic-
torial representation of Bayesian model checking: the method simply partitions the
domain of observations y into an acceptance region (in dark shade) where M is
more likely than P̄ a posteriori, and a rejection one (in light color) where this is not
the case. Similarly, a generic test statistic T can be regarded as a map from the
domain of observations y to the real domain, which is divided in an acceptance and
a rejection intervals by threshold T ̄, as in Fig. 3b. Clearly, it is always possible
(albeit not always simple) to define a transformation T and a threshold T ̄ (or )
mapping the dark and light domains of y to the corresponding intervals of T. The
test statistic thus defined will be perfectly consistent with a Bayesian model
checking with alternative model A. The opposite is also true, which is to say that,
given a test statistics T and a threshold T ̄, we can always identify the accept/reject
domains in the space of y and then define an appropriate model A, a prior prob-
ability P Mð Þ and a threshold P ̄ so that Bayesian model checking is compatible with
p-value analysis.

In other words, we can always read the practice of using a test statistic in terms
of the Bayesian model selection outlined in 2.3 as follows: the agent implicitly
assumes an alternative model, that is supposed to generate values of T higher than
that ofM and because of this, a high value T raises concern aboutM, and lower its
posterior probability, possibly under P ̄. So the selection of the statistic is closely
related to the candidate and the alternative models. Practically, test statistics can be
used when direct application of Eq. 7 is not viable, for example because of the
computational complexity of defining A or evaluating p yjAð Þ. It is to be noted that
some authors propose model checking through test statistics as a path to data
exploration, even more effective than direct Bayesian model comparison, because
the latter may suffer, in practical implementations, to a high sensitivity to noise
parameters (see Gelman and Shalizi 2013, and reference to Lindley 1957).
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4.2 Selection of Test Statistics

Similarly to the selection of alternative model A, the selection of test statistic T is
based on the agent’s belief, experience, and knowledge of the physical problem.
Neither A nor T derives logically from the analysis of M alone. Although in
principle we can always select a test statistic consistent with a Bayesian model
comparison, in practice this relationship is not always straightforward. Nonetheless,
investigating this correspondence helps us to shed light on how test statistics should
be selected.

Let us consider the case when model A is a complicate extension of M,
including additional factors that the agent considers likely negligible. If needed, she
can revise the original model, by including these factors. The agent selects a
statistics T as a symptom of the neglected factors. If the value of T could be
deterministically predicted under M, the default model would be logically dis-
proven whether the observed value T ̃ disagreed with such prediction. If, on the other
hand, T is uncertain under M, the model cannot be disproven by any value asso-
ciated with a positive density p TjMð Þ. However, as A is supposed to give higher
values of T, a high statistic may indicate that observations come from A instead of
M. In light of this, the agent can fix a threshold T ̄ on the statistic, and revise the
analysis if T ̄ is above this value. The selection of threshold on the p-value may
be more intuitive than that of T ̄. If prior p-value is intended as a random variable,
as a function of random measures y, it is uniformly distributed under M, so
represents the probability of rejecting M for measures generated from that model
(i.e., of committing a “type I error”.), and it is called the test significance level.
However, it is to be noted that posterior p-value is not uniformly distributed,
even under M, and tends to be concentrated around 50% (Gelman 2013). Intu-
itively, this happens because, during the inference process, the model is updated to
fit the observations and, as a result, observations look less extreme than from the
prior point of view (however, posterior p-value can be re-normalized to have uni-
form distribution). Despite of this, the use of posterior p-value has been advocated
(Gelman et al. 2003) for the following reasons. First, when an improper prior
distribution is adopted for the model parameters, the distribution of the replicate
may be improper as well, and so that of the statistics: hence, the prior p-value may
fail to measure the “strangeness” of the measures. For the second argument, con-
sider a region in the parameter domain that, while having high prior probability,
receives almost zero posterior probability, e.g. because it is in “bad agreement” with
the observed measures, according to modelM. By posterior model checking, we do
not compare the observed statistic with replicates coming from that region, as it has
been ruled-out from the data. On the contrary, prior checking makes use of that
region, according to the prior probability. In other words, in posterior checking we
compared the measure with the updated model, that is the one we will use if we will
accept M.

Even if the agent identifies the factors, left outside M, to be tests against the
measures, still the problem remains of selecting an appropriate test, sensitive to
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those factors. While the test significance level is invariant respect to the statistic
(after selecting and, in the case of posterior analysis, after normalization), the
probability of rejecting the model when data are generated from the alternative one
(i.e. the so called test power) strongly depends on function T . The agent wants the
test power to be high, to decrease the probability of a “type II error”, accepting M
when measures comes from A. In this next section we investigate how specification
of the models is related to the power in a very special setting, that of Gaussian linear
model under known perturbation, to illustrate the relation between test statistics and
models.

We close this section by specifying some limits of our analysis. First, we do not
directly cope with the issue of multiple tests as, in another context, model falsifi-
cation does (Goulet et al. 2013). Second, we focus on the sensitivity of the test
respect to a perturbation in the model, which would bias the inference, without
directly addressing the sensitivity of the outcome of the inference process itself
(e.g., the risk assessment in an engineering problem), respect of the perturbation.

4.3 Selecting Test Statistics for Linear Gaussian Models

To investigate the relation between p-values and Bayesian model selection, and
how to consistently select an appropriate test statistic, we focus on the specific
setting of Gaussian linear models (also investigated by Hjort et al. 2006), for which
close formulas are available. All computational details are reported in Appendix A.
Vector θ lists random parameters of the default model M, normally distributed
(with mean vector μθ and covariance matrix and Σθ), linearly related (by matrix A)
to response r, while measures y are affected by an additive zero-mean Gaussian
noise ε, with covariance matrix Σε. In alternative model A, the additive disturbance
(or “perturbation”) Δ r also affects the response, and is linearly related to param-
eters η by “shape” vector b (with unitary L-2 norm).

We define test statistic T as a linear function of measures, by vector v that we can
call a “test direction”. As the modulus of the direction is immaterial to the p-value
analysis, we force it to have unitary L-2 norm. When we refer to the prior p-value,
the statistic is normally distributed, and can be normalized so that it is standard
normally distributed under M. Under A, the normalized statistics is still normally
distributed, with unitary standard deviation and mean μπ linearly related to scale
factor η. The sensitivity απ of μπ to η (defined by μπ = απη) depends on v, and the
best statistic for prior analysis is that for which απ is the highest. If, on the other
hand, we evaluate the posterior p-value, the normalized statistics is normally dis-
tributed with standard deviation σω, zero-mean under M and with mean μω under
A. Re-normalized mean μΩ = σ − 1

ω μω = αΩη is still linearly related to scale factor η,
via sensitivity factor αΩ. The best statistics for posterior analysis has the highest
value of αΩ.
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As illustrates in the appendix, the optimal prior statistics vector v*π is parallel to
Σ− 1
Y b (where ΣY =AΣθAT +Σε is the covariance matrix of measures y) while the

optimal posterior one v*ω is parallel to Σ− 1
ε b. Therefore, optimal prior and posterior

test directions are not the same: they are function not only of b, but also of the noise
assumption and, for prior analysis, of the whole measurement uncertainty. How-
ever, when the optimal vectors are selected, prior and posterior sensitivities are the

same (i.e. α* = απ v*π
� �

= αΩ v*ω
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTΣ− 1

Y b
q

); in light of this, the adoption of the

prior or the posterior analysis is equivalent, provided that the statistics is carefully
selected and threshold identified. In facts, the linear statistics associated to optimal
prior and posterior directions are in the equivalence relation described by Eq. 11.
When prior and posterior p-values are computed using those optimal directions,
they are deterministically related through the following formula:

ð12Þ
where Φ is the cumulative standard normal distribution. We plot Eq. 12 in Fig. 4a,
for different values of σω that, in turn, depends on perturbation shape, the covari-
ance matrixes of response and of noise. The non-uniform distribution of the pos-
terior p-values under M is reported in the appendix.

In this setting, a decision rule based on a linear test along the optimal direction is
consistent with one based on the posterior probability of model M, when an
appropriate threshold on the p-value is selected. This property derives from the
Fisher Linear Discriminative Analysis (Fisher 1936, Murphy 2012) and the proof is
reported in Appendix A. The prior p-value (again using the optimal direction) is
also deterministically related to the posterior probability of M by Bayes’ formula:

ð13Þ

Graph (b) shows this relation for P Mð Þ=1 2̸ and different values of μπ = α*η,
again a function of perturbation shape and covariance matrixes of response and of
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Fig. 4 a) relation between prior and posterior optimal p-values, b) posterior probability ofM as a
function of prior p-value
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noise. The relation is monotonic in a wide range of interest of the parameters.
However, the graph allows us to highlight that, as well known (Berger and Sellke
1987), p-values and posterior probabilities can differ for orders of magnitude, and
the selection of an appropriate value for is generally not identical, or simply
related, to that of P̄.

Figure 5 summarizes and exemplifies this setting, when vector y is made up just
by two measures. The decision boundary separating the two areas in Fig. 2 is here
an hyperplane (a straight line in this example) orthogonal to v*π , but not necessarily
to v*ω. We conclude with a note on optimal directions: posterior direction v*ω is
simpler to compute or define, respect to prior direction v*π , as the former is inde-
pendent of A and Σθ. In the special case of Σε proportional to the identity matrix, v*ω
coincides with b, so that the posterior test is trivial to define, given the perturbation
(as in Fig. 5). This remark highlights a possible benefit of posterior checking.

5 Illustrative Examples of Linear Gaussian Models

5.1 Toy Example in Data Analysis

To illustrate the inference process and the test statistics in Gaussian linear model,
we start with a toy example. Suppose that, under model M, our prior belief on
physical variable θ, say a local strain on a structure, is defined by a normal dis-
tribution with mean μθ =100με and standard deviation σθ =10με. N =5 direct
measures are collected, so matrix A is actually a column vector of N ones. Marginal
homoscedastic noise level is described by standard deviation σε =10με, equal to the
prior uncertainty. We investigate different scenarios of the noise correlation coef-
ficient ρε (between each pair of measures), ranging from 0 to 1. According to the
alternative perturbed model A, the first measure is affected by shift defined by the

Fig. 5 Example of inference
and model checking in
Gaussian linear models
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product of 1με and positive factor η (so the first entry of vector b is 1με, while other
entries are zero). We wish to update our knowledge of θ, by processing all mea-
sures. Our conclusion would be consistent under M. However, under A, a per-
turbation affects the first measure, and this may significantly bias our result. The
problem we face is to select a statistic able to highlight the perturbation. Clearly, all
choices are not equally good for this purpose: any vector v with zero at the first
entry would produce a statistic insensitive to the perturbation, and consequently
unable to discriminate between M and A. A reasonable candidate statistics is
related to a vector with unitary first entry, and zero to all other entries: this statistic
identifies T with y1, that is the only quantity the models disagree about. According
to this choice, we will reject M when y1 is too high, independently on all other
measures. However, y1 might be high because so is θ, and not because of the
perturbation. Being aware of this, we have to fix a high threshold to y1 and this
limits the power of the test. At least in the prior analysis, intuitively we can select a
better test; for example, we can compute the difference between y1 and the mean of
all other measures, by a vector v that, before normalization, assigns one to the first
entry, and value − 1 ̸ N − 1ð Þ½ � to each other entry. The idea behind this choice is
that, underM, measure y1 should be similar to the others, no matter what θ is, as all
other measures are certainly unperturbed.

In the posterior analysis, on the other hand, we do not need to embed the
inference about θ into the test statistic itself, as this follows an explicit Bayesian
updating, and we can test measure y1 in isolation. It turns out that the aforemen-
tioned tests are optimal when noise is uncorrelated, in the posterior setting, and in
the prior one in the limit case of an improper prior, respectively. The power of the
test is reported in Fig. 6a, as the probability of accepting model A (i.e. of making a
“type II error”) for thresholds of the prior p-value of 1% and of 10%, and for ρε
equal to zero and to 80%: the vertical axis reports the normal quantiles, so that the
probability varies linearly with η, starting from the complement of the threshold to
one. When measures are positively correlated, is it easier to detect anomalies of the
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Fig. 6 a probability of “type II error” vs magnitude of the perturbation, depending on threshold of
the prior p-value and noise correlation, b sensitivity of the normalized to statistic to noise
correlation, c optimal direction of the test statistic vs noise correlation, for the example in 5.1
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first measure, and consequently the test is more powerful. Graph (b) reports the
sensitivity α* as a function of the complement of ρε to one: the power increases
monotonically with ρε and, even if it looks linear (in the log-log) scale in this
domain, it goes to infinite when ρε goes to one as, in that limit case, measures
should be identical underM and any perturbation can be detected deterministically.
Any reasonable unit-length vector assigns the same coefficient to measures in the
set y2, . . . , yNf g, so the ratio between the first coefficient (v1) and the second one
(v2) is sufficient to describe vector v. Hence graph (c), by plotting the opposite of
this ratio, fully describes the optimal prior and posterior test statistic, as a function
of ρε. For uncorrelated noise, assigning 1 to the first measure, we should assign
(− 1 N̸) to all others, in the prior setting and zero in the posterior one. For higher
correlation, both settings tend to assign − 1 ̸ N − 1ð Þ½ � to all others.

This example illustrates on a simple setting how the optimal test statistic depends
on the prior or posterior analysis, and on the model parameters, including the
assumption on noise. In this and the following example, model checking using p-
value analysis is consistent with Bayesian model comparison, as illustrated in
Sect. 4.3, according to the Eq. 12–13.

5.2 Identification of the Stiffness of a Cantilever

As example of structural identification, consider a uniform cantilever of span L,
loaded with a transversal force applied to the tip, instrumented with 10 sensors
measuring transversal displacement, evenly separated along the beam, affected by
the superposition of two independent noise patterns: a noise independent for each
sensor and another one correlated among sensors, with square exponential corre-
lation and correlation length λ, both with standard deviation 10− 4L. In case (i), we
consider the identification of the bending flexibility, when model M assumes no
rotation at the fixed end. Parameter θ is FL2 3̸EI, where F is the force and EI the
bending stiffness, and is modelled by a normal distribution with standard deviation
σθ = 0.1%. In the alternative model A, the cantilever rotates at the edge. Figure 7a
reports the standard deviation of the prediction of measure for each sensor, and the
rigid perturbation due to edge rotation. Graph (b) reports the optimal prior and
posterior test directions when λ is zero (and so sensor noise is uncorrelated). While
the posterior optimal direction corresponds to the perturbation, the prior direction
does not, because it has to compensate for the flexible component. Graph 6(b)
reports the directions when λ L̸=20%, showing how the posterior direction can also
differ from the perturbation, when noise is correlated. Case (ii) defines an opposite
case: the cantilever is assumed to be rigid under model M and possibly flexible
under A. Now parameter θ is FL k̸, where k is the rotational stiffness of the edge.
Noise and prior parameters are as in case (i), and graphs (d), (e), (f) correspond to
(a), (b), (c) for that case, illustrating again how the appropriate test statistic, able to
correctly mimic Bayesian model comparison, closely depends on both A and M.
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6 Numerical Investigation of a Non-gaussian Model

While in the setting investigated in previous section it is straightforward to define a
linear test corresponding to an alternative model and, vice versa, an alternative
model corresponding to the linear test, such a pairing is hard to define in a more
general context. However, formulas for optimal linear directions, as defined in the
Sect. 4.3, can be used outside the linear Gaussian model, as heuristic for identifying
a relevant test. In this section, without any attempt of generality, we investigate the
performance of those formulas on a specific application outside that domain.

Consider the identification of position and value of load along a uniform beam,
of span L=5m, instrumented with 10 evenly spaced noisy sensors measuring
vertical displacement, as in the structural scheme reported in Fig. 8a. Similarly to
the application in 5.2, we model the noise affecting the sensors as the superposition
of two zero-mean Gaussian noises, each with standard deviation 0.5 mm: the first
component is an independent noise, while the second one (independent of the first
one) is correlated with squared-exponential function, and correlation length 1.5 m.
The load is defined by its position z and its value F, modeled as independent
random variables: z= x L̸ follows a beta 2, 2ð Þ distribution, while f =FL2 E̸I follows
a lognormal distribution lnN log 0.25, 40%2� �

(EI being the bending stiffness).
According to model M, edges are fixed. In this context, observations y, collected
by the sensor set, allow for updating the joint distribution of z and f , and conse-
quently the bending moment profile. In the alternative model A, springs with
rotational stiffness k are at the edges. We define that model by dimensionless
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Fig. 7 a standard deviation of the sensor measure, b optimal statistic directions for uncorrelated
noise, c optimal statistic directions for correlated noise for case (i), d–f corresponding quantities
for case (ii) in 5.2
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parameter η=EI ̸ kLð Þ, that is zero under M and infinite under a simply-supported
scheme. By analyzing observations through an appropriate test, we can detect
rotation at the edges, and raise concerns on the reliability on the inference based on
M. For selecting an appropriate test, we can predict the effect of rotation at the
edges that, however, depends on load position. To implement the formulas for
optimal direction outlined in Sect. 4.3, we need to define a perturbation shape b,
and covariance matrix of the measures. As an approximate approach, we compute
the perturbation when the load is at the mid-span, i.e. for the expected value of z,
and estimate the matrix by generating samples of measures and computing the
sample covariance. Figure 8b reports the perturbation shape b when load at the
mid-span and corresponding prior and posterior statistic directions. Intuitively the
prior direction highlights the contribution of the sensors close to the edges (but not
too close, as the perturbation is nil at the edges themselves) and do not consider
(actually it gives a negative weight) to the sensors close to the mid-span, where
model M predicts high displacements. Here we investigate the power of the cor-
responding test, by numerical simulations, adopting a numerical scheme similar to
that used by Pozzi and Der Kiureghian (2011) and reported in Appendix B. Fig-
ure 8c shows the distribution of the p-value under model M depending on the
approach (prior or posterior) and the statistic direction. As expected, the distribution
is uniform for prior p-values and it turns out to be almost flat also when direction v*π
is selected for posterior analysis. If the perturbation shape b or v*ω is used for
posterior analysis, the corresponding p-value tends to concentrate around 50%.
Figure 7d shows the corresponding distributions when the model is perturbed by
rotating supports, with η equals to 10%. As expected, p-values tend to the smaller
because of the perturbation.

Figure 9 shows the test power as a function of perturbation size η, reporting the
probability of a accepting model A because the p-value is below the selected
threshold (i.e., the “type II error” probability). As expected, all curves are mono-
tonic, as a higher perturbation will lead to reject A with higher probability and, in
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the prior setting, curves start at the threshold value for η equals to zero. Graph
(a) refers to a 1% threshold: in the prior setting, using the suggested direction v*π
gives the higher power, which is higher than the power using posterior tests. This
happens because posterior statistics tends to be concentrated around 50%, but it can
be normalized by fixing a threshold not on the p-value itself, but on the probability
that the p-value belongs to a tail of its distribution associated with a fixed proba-
bility, as described in 4.3 and Appendix A. Graph (b) adopts this correction, that
has virtually no effect on prior analysis: the power of the poster test is almost
indistinguishable from the best prior analysis when the suggested direction v*ω is
used. We report the corresponding results for a threshold of 5% in graphs (c) and
(d), showing similar results respect to the previous threshold. Even if we cannot
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claim that any of these linear tests are able to represent consistently a decision
boundary based on probabilistic model comparison between M and A, the analysis
suggests that, at least in this setting, the direction identified by the formulas outlined
in 4.3 are useful for the selection of powerful linear tests, and that prior and
posterior suggested directions leads to similar power, when the threshold is
appropriately corrected.

7 Conclusions

In this chapter, we have investigated the relationship between Bayesian model
checking and p-value analysis based on test statistics. While Bayesian comparison
provides an explicit transparent path to investigate alternative models, p-value
analysis is an alternative procedure for model checking. We have shown how any
test statistic underlies an alternative model that makes the test fully consistent with a
rigorous Bayesian model comparison. Similarly, given an alternative model in a
Bayesian setting, we can always define a test which yields consistent results as to
accept or reject the candidate model. Also, we demonstrated that it is always
possible to identify pairs of tests that are equivalent for prior/posterior model
checking. We have outlined these equivalences in closed form in the simple setting
of Gaussian models under a known constant possibly perturbation, and showed that,
under these assumptions, it is slightly easier (somehow “more intuitive”) to for-
mulate an appropriate test statistic for posterior model checking, as a function of the
perturbation to be investigated, respect to the appropriate test for prior model
checking. Outside a liner Gaussian setting, these simple closed form expressions
provide only an approximate solution, while the exact correspondence between
alternative model and test is not always easily found. In these cases, good engi-
neering intuition is still often the best resource to select an appropriate test statistic.

Generally, our purpose is not to recommend the use of test statistics, but to
investigate their meaning and relation with Bayesian analysis. Usually, p-value
analysis is computationally simpler than model comparison and, as we have noted,
the numerical scheme strongly resembles that of classical reliability analysis (in
case of prior model checking) and reliability analysis under information (in case of
posterior model checking). However, that procedure has several disadvantages
respect to explicit Bayesian model comparison. First, as the alternative model is not
explicitly defined, the corresponding assumptions cannot be openly discussed.
Secondly, as the p-values are not posterior probabilities of the candidate model, it
may be impractical to put a fixed threshold on their value. Nonetheless, reporting p-
values after Bayesian inference, for specific reasonable test statistics, may become
an interesting practice in probabilistic data analysis related to engineering
applications.
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Appendix A: Gaussian Linear Models

The Gaussian distribution N is defined as follows:

x ∼ N μ,Σð Þ⇔ log p xð Þ= −
1
2

x−μð ÞTΣ− 1 x−μð Þ+ constant

The standard normalGaussiandistributionφ and correspondingCDF are defined as:

x∼φ⇔x ∼ N 0, 1ð Þ, Φ xð Þ=
Zx

−∞

φ λð Þdλ

For each covariance matrix Σa, we indicate by Λa the corresponding precision
matrix Λa =Σ− 1

a .

Prior distribution θ∼N μθ,Σθð Þ
Response

r=A θ∼N μr,Σrð Þ with μr =Aμθ

Σr =AΣθAT

�
Perturbation Δ r Mj =0 Δ r Aj =b η
Noise distribution ε∼N 0,Σεð Þ
Measures y= r+Δ r+ ε

y Mj ∼N μY ,ΣYð Þwith μY =μr
ΣY =Σr +Σε

�
y Aj ∼N μ*

Y ,ΣY
� �

with μ*
Y =μr + bη

Test statistic T = vTy
T Mj ∼N μM, σ2M

� �
with μA = μM + vTbη

with
μM = vTμr
σ2M = vTΣYv

�
T Aj ∼N μA, σ2M

� �
Prior normalized
statistic

u= σ − 1
M T − μMð Þ

u Mj ∼φ

u Aj ∼N μπ , 1ð Þwith μπ = σ − 1
M vTbη

Posterior distribution θ yj ∼N μω,Σωð Þwith
Σω = Λθ +ATΛεA

� �− 1

μω =My+ c

�
and M=ΣωATΛε

c=ΣωΛθμθ

�
Replicate distribution yr yj ∼N μYr yj ,ΣYr Yj

� 	
with

ΣYr Yj =AΣωAT +Σε

μYr yj =Ky+d

�
and K=AΣωATΛε

d=AΣωΛθμθ

�

Model Checking After Bayesian Inference 335



Posterior statistics T yj ∼N μT yj , σ2T Yj
� 	

μT yj = vT Ky+ dð Þ
σ2T Yj = vTΣYr Yj v

(

Posterior norm. statistic u′ = σ − 1
T Yj T − μT yj

� 	
= σ − 1

T Yj v
T Vy−d½ �with V= I−K

u′ Mj ∼N 0, σ2ω
� �

with σ2ω = σ − 2
T Yj v

TΣεΣ− 1
Y Σεv

u′ Aj ∼N μω, σ
2
ω

� �
with μω = σ − 1

T Yj v
TΣεΣ− 1

Y bη
Uniform
posterior stat.

u
00
= σ − 1

ω u
0

u′′ Mj ∼φ
u′′ Aj ∼N μΩ, 1ð Þwith μΩ = σ − 1

ω μω
p-value , defined on

[prior p-value depends on u, posterior p-value on u0]
If u∼N μ, σ2ð Þ and z= u− μ

σ , the PDF and CDF of the

p-value is:

Optimization of Directions: Prior optimal direction is defined by maximizing sen-
sitivity απ = ∂μπ ∂̸η, or its square:

∂μπ
∂η


 �2
= σ − 2

M vTb
� �2

=
vTbbTv
vTΣYv

ðA1Þ

.
obtaining v= v*π ∝Σ− 1

Y b. Posterior optimal direction optimizes αΩ = ∂μΩ ∂̸η, or its
square:

∂μΩ
∂η


 �2
= σ − 1

ω σ − 1
T Yj v

TΣεΣ− 1
Y b

h i2
=

vTΣεΣ− 1
Y bbTΣ− 1

Y Σεv
vTΣεΣ− 1

Y Σεv
ðA2Þ

and, by comparing Eq.A1 and A2, we conclude that: v*ω ∝Σ− 1
ε ΣYv*π ∝Σ− 1

ε b.
Optimal Tests and Bayesian Model Comparison: The predictive distributions of

measures y, according to models M and A, are both normal. This is the setting for
linear discriminant analysis and Fisher’s linear discriminant analysis (Fisher 1936;
Murphy 2012). Specifically, because those distributions have the same covariance
matrix (ΣY ) and their mean vectors differ by bη, the Bayes ratio is a function of y,
proportional only to exp − yTΣ− 1

Y bη
� �

, and the posterior distribution can only be a
function of the projection of y along direction Σ− 1

Y b. In other words, the decision
boundary is linear and orthogonal to this direction. By defining T = v*Tπ y, with v*π
proportional to Σ− 1

Y b, the prior optimal statistic contains all information relevant for
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Bayesian model comparison. Both p-value and posterior probability of M are
monotonic functions of T, so the Bayesian decision boundary is completely defined
by a threshold on the p-value. Because of this, optimal prior test is consistent with
Bayesian analysis. When posterior optimal direction (v*ω) is selected (so that ∂μΩ is
equal to ∂μπ), posterior model checking is consistent with prior optimal checking,
and so, again, with model comparison.

Appendix B: Monte Carlo Scheme for Numerical Investi-
gation of the P-Value

For the large numerical campaign illustrated in Sect. 6, we have adopted an
inference scheme similar to that used in Pozzi and Der Kiureghian (2011), based on
Monte Carlo simulations.

Parameter values, noises, measures and statistics are sampled in a forward
scheme:

θ ið Þ
� i=1

M ∼ pθ Mj ε ið Þ
� i=1

M ∼ pε y ið Þ = r θ ið Þ
� �

+ ε ið Þ T ið Þ = q y ið Þ
� 	

A second set of independent values is also generated:

θ kð Þ
� k=1

N ∼ pθ Mj ε kð Þ
� k=1

N ∼ pε y kð Þ = r θ kð Þ
� �

+ ε kð Þ T kð Þ = q y kð Þ
� 	

The residual and likelihood function for each pair y kð Þ, θ ið Þ
n o

is computed in a N

by M matrix as:

δ k, ið Þ = y kð Þ − r θ ið Þ
� �

lhk, i = p y kð Þjθ ið Þ,M
� 	

= pε y kð Þ − r θ ið Þ
� �h i

= pε δ k, ið Þ
� �

For zero-mean Gaussian noise with precision matrix Λε, log-likelihood and
weight is:

log lhk, i = −
1
2
δTk, ið ÞΛεδ k, ið Þ +constant wi, k = lhi, k ̸∑

M

i=1
lhi, k

where the constant disappears in the ratio defining the weights. The prior p-value
associated with measure y kð Þ is:

While the posterior p-value associated with the same measures is:
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Batch and Recursive Bayesian Estimation
Methods for Nonlinear Structural System
Identification

Rodrigo Astroza, Hamed Ebrahimian and Joel P. Conte

Abstract This chapter presents a framework for the identification of nonlinear
finite element (FE) structural models using Bayesian inference methods. Using the
input-output dynamic data recorded during an earthquake event, batch and recursive
Bayesian estimation methods are employed to update a mechanics-based nonlinear
FE model of the structure of interest (building, bridge, dam, etc.). Unknown
parameters of the nonlinear FE model characterizing material constitutive models,
inertia, geometric, and/or constraint properties of the structure can be estimated
using limited response data recorded through accelerometers or heterogeneous
sensor arrays. The updated nonlinear FE model can be used to identify the damage
in the structure following a damage-inducing event. This framework, therefore, can
provide an advanced tool for post-disaster damage identification and structural
health monitoring. The batch estimation method is based on a maximum a poste-
riori estimation (MAP) approach, where the time history of the input and output
measurements are used as a single batch of data for estimating the FE model
parameters. This method results in a nonlinear optimization problem that can be
solved using gradient-based and non-gradient-based optimization algorithms. In
contrast, the recursive Bayesian estimation method processes the information from
the measured data recursively, and updates the estimation of the FE model
parameters progressively over the time history of the event. The recursive Bayesian
estimation method results in a nonlinear Kalman filtering approach. The Extended
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Kalman filter (EKF) and Unscented Kalman filter (UKF) are employed as recursive
Bayesian estimation methods herein. For those estimation methods that require the
computation of structural FE response sensitivities (total partial derivatives) with
respect to the unknown FE model parameters, the direct differentiation method
(DDM) is used. Response data numerically simulated from a nonlinear FE model
(with unknown material model parameters) of a five-story two-by-one bay rein-
forced concrete frame building subjected to bi-directional horizontal seismic exci-
tation are used to illustrate the performance of the proposed framework.

1 Introduction

System identification (SID) addresses the problem of constructing mathematical
models of a dynamic system using data measured from the system (Ljung 1999).
SID is very important in many engineering fields and found applications in a wide
range of problems. In particular, in the field of structural engineering, SID can be
used to assess changes in a structural system due to a damaging event (e.g.,
earthquake). This results in the capability of monitoring the state of damage (or
health) of a structural system and, therefore, of evaluating the risk involved in the
post-disaster occupancy (or operation) of the structure and providing decision
support for emergency response. Finite element (FE) model updating, which can be
defined as the process of calibrating a FE model to minimize the discrepancy
between the measured and FE predicted responses of a structure, is a powerful SID
method for structural systems.

Linear FE model updating has been one of the most popular approaches for
damage identification (DID) of civil structures. In this technique, linear FEmodels are
calibrated using low amplitude vibration data recorded before and after a potentially
damaging event and damage is characterized as the reduction of effective stiffness
over one or more regions of the structure. Linear FE model updating is typically
solved as a constrained optimization problem. The objective of the optimization
problem is to minimize the discrepancy between the measured and FE predicted
structural responses, which may consist of time or frequency domain responses or
quantities derived therefrom (e.g., modal parameters) (Friswell and Mottershead
1995; Simoen et al. 2015). Despite its popularity in the field of structural engineering,
linear FEmodel updating cannot provide any information about the inelastic response
regime in the structural components and system, such as history of plastic defor-
mations, residual deformations, loss of strength, loss of ductility capacity, etc. This
information is essential for a comprehensive condition assessment of the structure.

To overcome this limitation, a number of efforts have been undertaken in the
field of nonlinear FE model updating of civil structures (Ching et al. 2006; Song
and Dyke 2014; Yang et al. 2014) in recent years. Distefano and co-workers
contributed pioneering work in this topic in the 1970s (Distefano and Rath 1975a, b;
Distefano and Pena-Pardo 1976). The studies presented in the literature have uti-
lized simplified nonlinear structural models with lumped nonlinearities defined
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phenomenologically, through for example the Bouc-Wen plasticity model, to
describe the hysteretic force-deformation response behavior of the structure at the
story level or at the plastic hinge regions. However, such models are not used for
high-fidelity mechanics-based structural FE modeling; because they fall short in
accurately simulating the nonlinear response behavior of real-world structures
under extreme loading conditions. Recently, the problem of updating
mechanics-based nonlinear FE models of structures using input-output data recor-
ded during damage-inducing events has been investigated (Shahidi and Pakzad
2014; Astroza et al. 2015; Ebrahimian et al. 2015; Huang et al. 2015). An advanced
mechanics-based FE model, updated using the measured input-output data, is able
to capture actual damage mechanisms in the structural system and thus can provide
accurate information about the presence, location, type, and extent of damage in the
structure. Therefore, mechanics-based nonlinear FE model updating can be used for
rapid post-event condition assessment, by providing FE prediction of the damage in
the structure and risk assessment related to the continued occupancy (or operation)
of the structure.

This chapter describes the use of batch and recursive Bayesian estimation
methods to update mechanics-based nonlinear FE models of civil structures using
input-output dynamic data recorded during an earthquake event. The batch method
is based on a maximum a posteriori (MAP) approach, resulting in a constrained
nonlinear optimization problem that can be solved using gradient-based or
non-gradient-based optimization algorithms. The recursive method results in a
nonlinear Kalman filtering approach. The Extended Kalman filter (EKF) and
Unscented Kalman filter (UKF) are employed as recursive Bayesian estimation
methods. Implementation of the EKF and MAP method requires the FE response
sensitivities with respect to the model parameters to be estimated. These sensitiv-
ities are computed using the direct differentiation method (DDM), an accurate and
computationally efficient approach based on the exact (consistent) differentiation of
the FE numerical scheme with respect to the model parameters (Tsay and Arora
1990). An application example is presented based on data simulated numerically
from a realistic nonlinear FE model of a three-dimensional (3D) five-story
two-by-one bay reinforced concrete (RC) frame building subjected to bi-directional
horizontal earthquake excitation.

2 Bayesian FE Model Updating

In this section, different approaches based on the Bayesian inference method are
presented for the identification of nonlinear structural FE models. First, a general
Bayesian framework for FE model updating or identification of nonlinear FE model
parameters is described. Then, the batch and recursive methods for estimating the
unknown FE model parameters and quantifying their uncertainty are introduced.

The time-discretized equation of motion of an n-DOF nonlinear FE model of a
structural system at time step i can be written as

Batch and Recursive Bayesian Estimation Methods … 343



M θð Þq̈i θð Þ+C θð Þq ̇i θð Þ+ ri qi θð Þ, θð Þ=pi ð1Þ

in which qi,qi̇, qï ∈ℝn × 1 = relative displacement, velocity, and acceleration
response vectors at time step i, respectively, M∈ℝn × n = mass matrix,
C∈ℝn × n = damping matrix, ri qi θð Þ, θð Þ∈ℝn × 1 = history-dependent internal
resisting force vector, θ∈ℝnθ × 1 = FE model parameter vector, pi ∈ℝn × 1 =
dynamic load vector, which in the case of a rigid base earthquake excitation takes
the form pi = −ML ügi , with L∈ℝn × nu ̈g = influence matrix and ügi ∈ℝnu ̈g × 1 =
input ground acceleration vector where nug̈ = number of base excitation
components.

From Eq. (1), the response of the FE model at time step i to an earthquake
ground motion can be expressed as a nonlinear function mapping the FE model
parameters and the input ground acceleration time history to the FE predicted
response vector (see (Ebrahimian et al. 2016) for more details), i.e.,

yî =hi θ,ug̈1: i
� � ð2Þ

In this equation, yî ∈ℝny × 1 = FE predicted response, hi . . .ð Þ= nonlinear

response function of the FE model, üg1: i = üTg1 , u
T̈
g2 , . . . ,ü

T
gi

h iT
. In Eq. (2), at rest

initial conditions are assumed for the FE model (i.e., zero initial nodal displacement
and velocity vectors).

The dynamic response of civil structures can be recorded using an array of
heterogeneous sensors such as accelerometers, GPS antennas, displacement trans-
ducers, strain gauges, etc. The measured structural response vector, yi, can be
related to the FE predicted response vector, yî, using the prediction error framework
(Ljung 1999), i.e.,

vi θð Þ= yi − hi θ,ug̈1: i
� � ð3Þ

in which vi, the simulation error, stands for the discrepancies between the measured
and FE predicted responses of the structure. It accounts for the measurement noise,
errors in the FE model parameters, and analytical model uncertainties (i.e., physical
modeling assumptions). It is ideally assumed herein that the analytical FE model
can capture exactly the real-world physics of the structural response and, therefore,
the analytical model uncertainties (Haukaas and Gardoni 2011) are neglected.
Accounting for the effects of model uncertainties in the nonlinear FE model
updating framework presented here is out of the scope of this chapter. Moreover, it
is assumed herein that the time history of the input ground acceleration is deter-
ministic and known. By neglecting the effects of model uncertainties and assuming
that the measurement noise is Gaussian white, the simulation error at each time step
can be modeled as a stationary independent zero-mean Gaussian white noise vector
process (i.e., the simulation errors are modeled as statistically independent random
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variables across different measurement channels and over the time with a stationary
zero-mean Gaussian distribution). Therefore, it follows that

p við Þ= 1

2πð Þny 2̸ Rj j1 2̸ e
− 1

2v
T
i R

− 1vi ð4Þ

where Rj j denotes the determinant of the diagonal matrix R∈ℝny × ny defined as the
time invariant covariance matrix of the simulation error vector (i.e.,
R=E vivTi

� �
, ∀i). The unknown FE model parameter vector θ is modeled as a

random vector (denoted by Θ) according to the Bayesian approach for parameter
estimation. Bayes’ rule is employed to derive the posterior joint probability density
function (PDF) of the model parameters from the time histories of the noisy output
measurements and the prior joint PDF of these parameters, i.e.,

p θjy1: kð Þ= p y1: kjθð Þp θð Þ
p y1: kð Þ ð5Þ

in which y1: k = yT1 , y
T
2 , . . . , y

T
k

� �T = time history of the measured response of the
structure, and p y1: kjθð Þ= likelihood function. According to Eq. (3), it follows that

p y1: kjθð Þ= p v1: kð Þ= ∏
k

i=1
p við Þ ð6Þ

The objective of the nonlinear FE model updating framework is to estimate the
value (point estimate) of the unknown FE model parameter vector θ at which the
posterior joint PDF of Θ given the measured structural response is maximum, i.e.,

θ ̂
� �

MAP = argmax
θð Þ

p θjy1: kð Þ ð7Þ

where MAP stands for maximum a posteriori estimate. Two different approaches to
solve this problem are presented in this chapter: (1) batch Bayesian estimation
method, and (ii) recursive Bayesian estimation method.

2.1 Batch Bayesian Estimation Method

In the batch Bayesian estimation method, the entire time history of the measured
data is used as a batch of data to update the posterior joint PDF of the FE model
parameters and find the MAP estimate. Assuming a Gaussian distribution for the
prior joint PDF of Θ in Eq. (5), and assuming that the entire time history of the
measurement data is available from the first to the kth time step, the natural loga-
rithm of the posterior joint PDF can be derived as
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log p θjy1: kð Þð Þ= c0 −
kny
2

log 2πð Þ− k
2
log Rj jð Þ

−
1
2
∑
k

i=1
yi − hi θ, üg1: i

� �� �TR− 1 yi − hi θ, u ̈g1: i
� �� �

−
nθ
2
log 2πð Þ− 1

2
log P̂0

�� ��� �
−

1
2

θ− θ̂0
� �T P̂0

� �− 1 θ− θ0̂
� �

ð8Þ

in which c0 = − log p y1: kð Þð Þ is a constant, θ0̂ is the prior mean estimate of Θ, and
P̂0 is the prior covariance matrix of Θ, which quantifies the uncertainties associated
with the prior estimates of the FE model parameters.

Here the diagonal entries of matrix R, which are the variances of the components
of the simulation error vector, can also be treated as random variables and estimated
jointly with the FE model parameters through an extended parameter estimation and
measurement noise variance estimation. As discussed in (Ebrahimian et al. 2016),
this extended estimation approach enhances the robustness of the FE model
updating process. Moreover, it allows for automatic information assimilation from
the data measured by heterogeneous sensor arrays without the need to scale the data
manually.

The MAP problem defined in Eq. (7) results in the following minimization
problem:

θ ̂, r ̂
� �

MAP = arg min
θ, rð Þ

J r, θ, y1: k ,ug̈1: k
� � ð9Þ

J r, θ, y1: k,ug̈1: k
� �

=
k
2
∑
ny

j=1
log rj
� �

+
1
2
∑
k

i=1
yi − hi θ, ug̈1: i

� �� �TR− 1 yi −hi θ, ug̈1: i
� �� �

+
1
2

θ − θ ̂0
� �T P̂0

� �− 1 θ − θ0̂
� �

ð10Þ

in which r∈ℝny × 1 is the vector of the diagonal entries of matrix R. This mini-
mization problem is solved using the interior-point method (Byrd et al. 1999),
which is a gradient-based minimization algorithm. It requires the computation of
the gradient of the objective function with respect to the optimization parameters,
which in turn requires the FE response sensitivities with respect to the FE model
parameters. The latter can be computed accurately and efficiently utilizing the DDM
(e.g., (Tsay and Arora 1990; Kleiber et al. 1997; Zhang and Der Kiureghian 1993)).

The Posterior Cramér–Rao lower bound (PCRLB) theorem (Van Trees 2002)
can be used to quantify the parameter estimation uncertainties and to estimate a
lower bound for the covariance matrix of the estimated FE model parameters. The
lower bounds for the estimation problem shown in Eq. (9) can be derived as (see
(Ebrahimian et al. 2016) for more details)
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Cov Θð Þ≥ ∑
k

i=1

∂hi θ,ug̈1: i
� �
∂θ

� �T

R− 1 ∂hi θ, ug̈1: i
� �
∂θ

" #
θ̂, R̂

+ P̂0
� �− 1

 !− 1

ð11Þ

Cov Rið Þ≥ k
2
1
r2̂i

ð12Þ

in which Ri is a random variable characterizing the ith diagonal entry of matrix R.
The right-hand side of Eq. (11) (which is the inverse of the Fisher Information
matrix) can also be approximated by the Hessian matrix of the objective function J
in Eq. (10). Therefore, two methods can be utilized to quantify the parameter
estimation uncertainty. The first method is based on computing the Fisher Infor-
mation matrix, as shown in Eq. (11), which is referred to as Method 1 in this
chapter. Referred to asMethod 2, the second method is based on the computation of
the Hessian matrix of the objective function in Eq. (10). The Hessian matrix is a
by-product of the optimization procedure and is approximately estimated using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Gill et al. 1981).

2.2 Recursive Bayesian Estimation Method

2.2.1 Extended Kalman Filter (EKF)

The MAP problem defined in Eq. (7) can alternatively be solved using a recursive
(time step by time step) solution approach. The MAP estimate of Θ at time step i is
derived by differentiating Eq. (8) with respect to θ and solving for θ, i.e.,

∂ log p θjyið Þð Þ
∂θ

=0 ⇒ yi − hi θ , üg1: i
� �� �TR− 1 ∂hi θ , üg1: i

� �
∂θ

− θ − θ̂−
i

� �T P̂
−
i

� �− 1
= 0

ð13Þ

in which θ ̂−i and P̂
−
i are the prior estimates of the mean and covariance matrix of Θ

at time step i, respectively. Equation (13) is a nonlinear algebraic equation, which
can be solved approximately using a first-order approximation of the nonlinear
function hi θ , ug̈1: i

� �
which represents the nonlinear finite element response func-

tion. The first-order Taylor series expansion of hi θ,ug̈1: i
� �

at θ ̂−i can be expressed
as

hi θ,ug̈1: i
� �

≅ hi θ ̂
−
i ,ug̈1: i

� �
+Ci θ− θ ̂−i

� � ð14Þ
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where Ci =
∂hi θ,u ̈g1: ið Þ

∂θ

����
θ ̂−i

= FE response sensitivity matrix computed at θ= θ ̂−i .

Substitution of Eq. (14) into Eq. (13) results in the following posterior mean
estimate of Θ at time step i:

θ ̂+i = θ ̂−i + CT
i R

− 1Ci + P̂
−
i

� �− 1
	 
− 1

CT
i R

− 1 yi −hi θ ̂
−
i ,ug̈1: i

� �� � ð15Þ

in which CT
i R

− 1Ci + P̂
−
i

� �− 1
	 
− 1

CT
i R

− 1 =Ki is known as the Kalman gain

matrix. It can be shown that the Kalman gain matrix can also be expressed as
(Simon 2006)

Ki = P̂
−
i CT

i Ci P̂
−
i CT

i +R
� �− 1 ð16Þ

Therefore, the posterior mean estimate of Θ at time step i can be found as

θ ̂+i = θ ̂−i +Ki yi − hi θ ̂
−
i , ug̈1: i

� �� � ð17Þ

Using Eqs. (3) and (14), it is obtained that P θy
i = P̂

−
i CT

i = cross-covariance
matrix of Θ and Y at time step i. Moreover, it is found that Pyy

i =CiP̂
−
i CT

i +R=
covariance matrix of Y at time step i. Therefore, it can be concluded that

Ki =Pθy
i Pyy

ið Þ− 1 ð18Þ

The posterior covariance matrix of Θ can be approximated using the PCRLB
theorem as

P̂
+
i = CT

i R
− 1Ci + P̂

−
i

� �− 1
	 
− 1

ð19Þ

Using the matrix inversion lemma, it follows that

P̂
+
i = I−KiCið Þ P̂−

i = P̂
−
i −KiP

yy
i KT

i ð20Þ

Therefore, at each time step, the prior estimates of the mean and covariance
matrix of the parameter vector Θ are updated to the posterior estimates based on the
observed discrepancies between the measured and estimated (predicted) structural
responses. The posterior estimates of the mean and covariance matrix of Θ are then
transferred to prior estimates at the next time step and the estimation/updating
process continues in time. However, to improve the convergence of the recursive
estimation procedure, a random disturbance referred to as process noise is added to
the estimation process. This process noise is modeled as a stationary independent
zero mean Gaussian white noise random vector, denoted as γ, with a time-invariant
diagonal covariance matrix Q. Thus, at each time step, matrix Q is added to the

348 R. Astroza et al.



posterior covariance matrix of Θ to yield the prior covariance matrix of Θ at the
next time step, i.e.,

Θ−
i+1 =Θ+

i + γ⇒ θ ̂−i+1 = θ ̂+i , P̂
−
i+1 = P̂

+
i +Q ð21Þ

This recursive MAP estimation procedure using linearization (with respect to θ)
of the nonlinear FE model is referred to as the EKF method (Simon 2006). By the
linearization of the nonlinear FE model, the likelihood function shown in Eq. (6)
will be a Gaussian function of θ. Assuming a Gaussian prior joint PDF of the FE
model parameters Θ, the posterior joint PDF will also be Gaussian (see Eq. (5)).
Therefore, the MAP estimate is the mean of the posterior joint PDF of Θ.

2.2.2 Unscented Kalman Filter (UKF)

The UKF method is also a recursive MAP estimator similar to the EKF method.
Both the prior and posterior joint PDF of the FE model parameters θ are assumed to
be Gaussian at each time step. The UKF, however, uses the unscented transfor-
mation (UT) method (Julier and Uhlmann 1997; Wan and van der Merwe 2000), a
deterministic sampling approach, to propagate the uncertainty in Θ through the
nonlinear FE model, see Eq. (2), thus circumventing the linearization of the FE
model used in the EKF method, see Eq. (14). Therefore, it results in a more
accurate estimation of the posterior mean and covariance matrix of the parameter
vector Θ, especially for highly nonlinear (FE) models (with respect to θ). The UT
provides a more accurate estimation of Pθy and Pyy and, therefore, a more accurate
estimate of the Kalman gain matrix (see Eq. (18)).

The UKF evaluates the nonlinear FE model at a set of deterministically selected
realizations of the FE model parameter vector Θ, referred to as sigma points
(SPs) and denoted by ϑ− , j

i , taken around the prior mean estimate θ ̂−i . In this study,
a scaled UT is selected and, therefore, the number of SPs is 2nθ +1ð Þ, i.e.,
j=1, . . . , 2nθ +1. The weighted sample mean and covariance matrix of the SPs are
equal to the prior mean estimate (θ ̂−i ) and prior covariance matrix estimate (P̂

−
i ) of

the parameter vector θ, respectively. The SPs are propagated through the nonlinear
FE model yielding

yji = hi ϑ− , j
i ,üg1: i

� � ð22Þ

The mean and covariance matrix of the FE predicted structural response Y, and
the cross-covariance matrix of Θ and Y are respectively computed as (Astroza et al.
2015)

hi θ , ug̈1: i
� �

= ∑
2nθ +1

j=1
W j

my
j
i ð23Þ
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Pyy
i = ∑

2nθ +1

j=1
W j

c y j
i −hi θ , ug̈1: i

� �� �
y j
i −hi θ , ug̈1: i

� �� �T
+R ð24Þ

Pθy
i = ∑

2nθ +1

j=1
W j

c ϑ− , j
i − θ ̂−i

� �
y j
i − hi θ , ug̈1: i

� �� �T ð25Þ

where W j
m and W j

c denote the mean and covariance weighting coefficients,
respectively (Wan and van der Merwe 2000). The Kalman gain matrix, posterior
mean and covariance matrix estimates of θ at time step i are obtained from
Eqs. (18), (17), and (20), respectively.

3 Application Example

Simulated dynamic response data from a virtual 3D five-story two-by-one bay RC
frame building subjected to bi-directional horizontal seismic excitation are used
herein to verify the FE model updating methodologies presented in Sect. 2.
A mechanics-based nonlinear FE model of the prototype building, developed in the
software framework OpenSees (http://opensees.berkeley.edu/), is used for response
simulation. The simulated response data are contaminated with additive zero-mean
white Gaussian noise and used as measured output data to estimate the parameters
characterizing the nonlinear material constitutive laws of the concrete and rein-
forcing steel.

The structure is designed as an intermediate moment-resisting RC frame located
in downtown Seattle, Washington, with Site Class D soil conditions, a short-period
spectral acceleration SMS =1.37 g, and a one-second spectral acceleration
SM1 = 0.53 g. The building has two bays in the longitudinal direction (X) and one
bay in the transverse direction (Z), with plan dimensions of 10.0 × 6.0 m,
respectively. The frame has five stories with a floor-to-floor height of 4.0 m.
The building is designed according to the 2012 International Building Code
(International Code Council (ICC) 2012).

The building has six identical 0.45 × 0.45 m RC columns reinforced with 8 #8
longitudinal reinforcement bars and #3 bars spaced at 150 mm as transverse rein-
forcement. Grade 75 reinforcing steel is assumed for the columns. Longitudinal
beams have a square 0.40 × 0.40 m cross-section and are reinforced with 6 #8
longitudinal reinforcement bars and #3 bars spaced at 100 mm transverse rein-
forcement. Transverse beams have a rectangular 0.40 × 0.45 m cross-section and
are reinforced with 8 #8 longitudinal reinforcement bars and #3 bars spaced at
100 mm as transverse reinforcement. Grade 60 reinforcing steel is assumed for the
beams in both directions. Figure 1 shows the overall geometry of the building and
the cross-sections of the beams and columns.
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Figure 2 shows the FE model details for the RC frame building, including FE
mesh discretization, nodal masses, and gravity loads applied on the beams. Non-
linear fiber-section displacement-based frame elements (Taucer et al. 1991) are used
to model the beams and columns and Gauss-Lobatto quadrature is used for
numerical integration along the elements. In this modeling approach, material
nonlinearity can spread over various sections monitored along the element, called
integration points (IPs). The IPs are further discretized into layers or fibers, the
stress-strain behavior of which is governed by nonlinear uniaxial material consti-
tutive laws. Material constitutive models depend on a set of parameters (e.g., elastic
modulus, initial yield stress, etc.), the estimation of which is the objective of the
nonlinear FE model updating approaches presented in this chapter. It is important to
mention that a structure is usually made up of a relatively small number of different
structural materials, each represented by a set of material model parameters,
therefore the estimation process deals with a limited number of material model
parameters, even in the case of large structural systems.

The cross-sections of beams and columns are discretized into longitudinal fibers
as illustrated in Fig. 2b. Linear force-deformation models for shear and torsion are
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Fig. 1 RC frame building: a Isometric view (black arrows indicate the locations and directions of
the measured acceleration responses), b Cross-sections of beams and columns
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defined (aggregated) at the section level and along the element, but the shear is
coupled with bending only at the element level through equilibrium.

The modified Giuffré-Menegotto-Pinto model (Filippou et al. 1983) is used to
model the nonlinear uniaxial stress-strain behavior of the longitudinal steel rein-
forcing bars. This material model is governed by eight parameters, three of which
are primary parameters, while the other five are secondary parameters controlling
the curvature of the hysteresis branches between consecutive strain reversal points.
The primary material parameters consist of the elastic modulus (Es), initial yield
strength (fy), and strain hardening ratio (b). These parameters are considered
unknown parameters and are estimated through the FE model updating method-
ology presented herein. The Popovics-Saenz model (Popovics 1973; Saenz 1964;
Balan et al. 2001), which is characterized by five material parameters, is used to
model the nonlinear uniaxial stress-strain behavior of the concrete fibers The
concrete material model parameters are the modulus of elasticity (Ec), peak com-
pressive strength (fc), strain at peak compressive strength (εc), crushing strength
(fu), and strain at crushing strength (εu). The values of fc, εc, fu, and εu correspond to
the confined state of concrete and for response simulation purposes are determined
based on the initial properties of the concrete material. The confinement effects of
the transverse reinforcement on the concrete compressive strength and ductility are
accounted for by modifying the parameters fc and εc according to Mander et al.
(Mander et al. 1988) and εu as suggested by Scott et al. (Scott et al. 1982).

Figure 3 shows the uniaxial material constitutive models used for the concrete and
reinforcing steel fibers together with their corresponding parameters assumed to be
unknown in the estimation phase. A set of material parameter values, referred to
hereafter as true values, are assumed for the concrete and reinforcing steel materials in
order to simulate the response of the structure. The true material parameter values are:
Etrue
s− col =200 GPa, f truey− col =517 MPa, btruecol =0.01, Etrue

s− beam =200 GPa, f truey− beam =
414 MPa, btruebeam =0.05, Etrue

c =27600 MPa, f truec =40 MPa, and εtruec =0.0035.

(a) (b)

Fig. 2 Finite element model: a FE mesh discretization, nodal masses, and distributed loads on
beams, b cross-section fiber discretization
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The concrete material parameters fu and εu are not considered as estimation param-
eters, since they have negligible effects on the simulated response of the structure in
this case study.

The damping energy dissipation (beyond the energy dissipated through hys-
teretic material behavior) is modeled using mass and tangent stiffness-proportional
Rayleigh damping (based on the tangent stiffness matrix at the last converged step
of analysis). A critical damping ratio of 2% for the first and second modes
(T1 = 2.01 s and T2 = 0.64 s, after application of the gravity loads) is considered.
Consequently, the mass and stiffness proportional parameters used to describe the
Rayleigh damping are αM =0.0948 and βK =0.0031, respectively.

The horizontal components of the ground acceleration recorded at the Sylmar
County Hospital during the 1994 Northridge earthquake (Fig. 4) are used as input
base excitation (ug̈). The 360° and 90° components are applied in the longitudinal
and transverse direction of the building, respectively. They were recorded at a
sampling rate of 50 Hz, filtered through a band-pass filter with cutoff frequencies of
0.1 and 23.0 Hz, and have N =550 data samples each. The peak ground acceler-
ations (PGA) of the 360° and 90° components are 0.84 g and 0.60 g, respectively.

3.1 Bayesian FE Model Updating

The nonlinear FE model presented above with the true material parameter values

(θtrue = Etrue
s− col, f

true
y− col, b

true
col ,E

true
s− beam, f

true
y− beam, b

true
beam,E

true
c , f truec , εtruec

h iT
∈ℝ9 × 1) is

subjected to the earthquake input motion shown in Fig. 4 and used to define the true
response of the structure. After completion of the response simulation, the true
relative horizontal acceleration responses at the 3rd, 5th, and roof levels in both the
longitudinal (X) and transverse (Z) directions (see black arrows in Fig. 1) are
contaminated with additive zero-mean Gaussian white noise, which represents the
output measurement noise. A 1.0%g root-mean-square (RMS) zero-mean white

Strain (ε)

Stress (σ)
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b Es
fy

Strain (ε)

Stress (σ)

εc
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Fig. 3 Uniaxial material models used in the FE model: a Concrete, b Reinforcing steel
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Gaussian noise is added to each simulated relative acceleration response time
history, i.e., the actual covariance matrix of the output measurement noise vector is
0.01 gð Þ2I6 = 0.96 × 10− 2I6ðm s̸2Þ2 where Ij = j× j identity matrix. Statistically
independent realizations of output measurement noise are used for different
acceleration responses. It is noted that a noise level of 1.0%g RMS is considerably
larger than the level of noise expected from accelerometers currently used in
earthquake engineering applications. Nevertheless, this relatively high level of
measurement noise is considered in this study to examine the performance and
robustness of the proposed parameter estimation process under extremely noisy
measurement conditions. The simulated noisy floor relative acceleration response
time histories are used as measured output (y) in the estimation phase. It is assumed
that the noiseless seismic input is available in the parameter estimation phase, i.e.,
the input measurement noise is not considered in this study.

The batch and recursive Bayesian estimation approaches presented in Sect. 2 are
used to estimate the unknown FE model parameters (θ= Es− col, fy− col, bcol,

�
Es− beam, fy− beam, bbeam,Ec, fc, εc�T ) and to update the nonlinear FE model of the
structure. It is noteworthy that the same FE model is used for response simulation
and for parameter estimation, i.e., the effects of modeling errors (or uncertainty) are
not considered in this study. The initial estimates (guesses) of the expected values
of the model parameters are taken as θ ̂0 θ̸true = ½0.70 , 1.30 , 1.25 , 1.30 , 0.80 ,
0.75 , 1.20 , 0.85 , 0.90�T .

For the recursive approaches (i.e., UKF and EKF), it is assumed that the output
measurement noise is a zero-mean white Gaussian process with a covariance matrix
R=0.47 × 10− 2I6ðm s̸2Þ2, i.e., a standard deviation (or RMS) of 0.7%g. The
assumed amplitude of the measurement noise is purposely chosen to be different
from the true amplitude, since in a real-world application the exact measurement
noise amplitude is unknown. However, it can be estimated approximately based on
the characteristics of the sensors and DAQ system used, experience, and engineering
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Fig. 4 Ground acceleration records used as seismic input motions
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judgment. Therefore, the estimated amplitude of the measurement noise is not
expected to be far from the true value for the various types of sensors involved.
Time-invariant first- and second-order statistics are assumed for the process noise,
with zero-mean and covariance matrix Qk =Q. The diagonal entries of Q are taken
as ðq× θ0nÞ2 where n=1, . . . , 9 and q=1× 10− 5, i.e., for each of the material
parameters (θ0̂), the RMS of the process noise is taken to be 1 × 10− 5 the initial prior
mean estimate of the parameter. The initial estimate of the covariance matrix of the
model parameters, P̂0, is assumed to be diagonal (i.e., initial estimates of the FE
model parameters are assumed statistically uncorrelated). Diagonal entries of P̂0 are
taken as ðp× θ0nÞ2 where n=1, . . . , 9 and p=0.15, i.e., a coefficient of variation of
15% is assumed for the initial estimates of the FE model parameters.

Two cases are considered in the batch Bayesian estimation approach. In the first case,
the unknown FE model parameters (θ) and the diagonal entries of the measurement
noise variance matrix (r∈ℝ6 × 1) are jointly estimated though an extended opti-
mization process as shown in Eq. (9). The initial estimate of the measurement noise
variances is taken as r0̂ = 0.47 × 10− 2 1, 1, 1, 1, 1, 1½ �Tðm s̸2Þ2, corresponding
to a 0.7%g RMS measurement noise. The feasible search domain for the model
parameters is chosen as 0.4θ0̂ ≤ θ≤ 2.5θ0̂, where θ0̂ denotes the vector of initial
estimates of the FE model parameters. The feasible search domain for the mea-
surement noise variance is taken as 0.01r0̂ ≤ r≤ 100r0̂.

In the second case, only the FE model parameters θ are estimated, while the
measurement noise variances r are initially estimated (by the same value assumed
for the recursive approaches for comparison purposes) and kept constant during the
FE model parameter estimation process. In both cases, the parameter estimation
uncertainty is quantified by evaluating the CRLB using the two methods presented
in Sect. 2.

The optimization convergence criterion consists of two conditions; the opti-
mization process is considered converged when at least one of the following
conditions is satisfied:

Condition 1:

θ ̄m̂
r ̄m̂

� �
− θ ̄m̂− 1

r ̄m̂− 1

� �

2
≤ 10− 7 ð26Þ

Condition 2:

∇J θ, rð Þk k∞ ≤ 10− 7 ð27Þ

where θ ̄m̂ is the estimated normalized (with respect to the initial parameter esti-
mates) FE model parameter vector at the mth optimization iteration, . . .k k 2 denotes
the Euclidean norm, and . . .k k∞ denotes the infinity norm. It is noted that for the
second case study where the vector r is fixed, only the FE model parameters θ
remain in Conditions 1 and 2.

Batch and Recursive Bayesian Estimation Methods … 355



3.1.1 Discussion of Parameter Estimation Results

Table 1 reports the estimated FE model parameters normalized by the corre-
sponding true values θn θ̸truen

� �
with n=1, . . . , 9 and Table 2 gives the corre-

sponding coefficient of variations (C.O.V.) defined as σ̂θn θ̸n, where σθ̂n is the
estimated standard deviation of the FE model parameter θn. For the recursive
approaches, these quantities correspond to the estimation results obtained at the last
time step, while for the batch approach, they are the converged values obtained after
the convergence criteria presented in Eqs. (26) and (27) are satisfied.

Accurate estimation results are obtained with the different estimation methods,
with relative estimation errors less than or equal to 4% for all nine FE model
parameters considered in this application example. Material initial stiffnesses
(Es− col,Es− beam, and Ec) and yield parameters of reinforcing steel (fy− col and
fy− beam) are accurately estimated using all the estimation methods. Material model
parameters bcol, bbeam, fc, and εc are estimated with larger relative errors (≤ 4%)
and they are associated with larger estimation uncertainty as can be inferred from

Table 1 FE model parameter estimates

Estimation
method

FE Model parameter estimates (θn θ̸truen ), n=1, . . . , 9
Es− col
Etrue
s− col

fy− col

f truey− col

bcol
btruecol

Es− beam
Etrue
s− beam

fy− beam

f truey− beam

bbeam
btruebeam

Ec
Etrue
c

fc
f truec

εc
εtruec

UKF 1.00 1.00 1.01 1.00 1.00 0.99 1.00 1.01 0.98
EKF 1.00 1.00 1.04 1.00 1.00 0.99 1.00 1.00 0.99
Batch with
noise variance
estimation

1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99 0.98

Batch without
noise variance
estimation

1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00 0.98

Table 2 Parameter estimation uncertainty

Estimation method C.O.V. (%) of FE model parameter (σθ̂n θ̸n)
Es− col fy− col bcol Es− beam fy− beam bbeam Ec fc εc

UKF – 0.09 0.06 1.47 0.13 0.08 0.32 0.21 0.87 1.88

EKF – 0.11 0.07 1.58 0.15 0.09 0.31 0.33 0.95 2.11

Batch with
noise var.
estimation

Method 1 0.15 0.10 2.27 0.21 0.13 0.43 0.50 1.29 3.03

Method 2 0.16 0.11 2.45 0.25 0.13 0.33 0.55 1.33 3.45

Batch
without noise
var.
estimation

Method 1 0.11 0.07 1.59 0.15 0.09 0.31 0.35 0.91 2.12

Method 2 0.11 0.07 1.62 0.15 0.10 0.30 0.32 0.84 2.13
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their C.O.V.s that are ranging between 0.3 and 3.5%. Since the measured output
responses are less sensitive to bcol and εc, i.e., less information about these
parameters is contained in y, larger relative errors and C.O.V.s in their final esti-
mates are observed.

Figures 5 and 6 show the convergence history of the nine FE model parameters
using the recursive (UKF and EKF) and batch estimation approaches, respectively.
In the case of the recursive approach (Fig. 5), the parameter estimates are observed
to converge and therefore the final estimates correspond to stable and converged
values. The initial-stiffness related material parameters (Es− col,Es− beam, and Ec)
start updating from the first time steps because the output responses are sensitive to
elastic-related material parameters at all levels of excitation (and especially at low
levels). These parameters converge to their true values at about the 4th second of
earthquake excitation. It should be noted that the FE acceleration response sensi-
tivities with respect to Ec are much higher than those to other material parameters
during the first two seconds. Since the EKF is based on the analytical linearization
(differentiation) of the nonlinear FE response, a large and abrupt jump in the
recursive estimate of Ec is observed at the beginning of the excitation. The UKF
shows a smoother convergence because this approach circumvents the analytical
differentiation of the nonlinear FE response prediction with respect to the estimation
parameters. In addition, in the UKF, a parameter controlling the spread of the SPs
around the mean value (set equal to 0.01 in this study as suggested in (Wan and van
der Merwe 2000)) allows to control the rate of convergence of the filter (see
(Astroza et al. 2015) for more details). The other material model parameters start
updating at about or after the 2nd second of the earthquake excitation, when the
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Fig. 5 Time histories of the posterior estimates of the FE model parameters using the recursive
approach
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amplitude of the excitation increases abruptly (see Fig. 4). The yield strength of the
reinforcing steel, the strain hardening ratio of the reinforcing steel in the beams
bbeamð Þ, and the compressive strength of the concrete fcð Þ quickly converge to their
true values. Estimates of the strain hardening ratio of the column reinforcing steel
bcolð Þ and of the strain at the peak compressive strength of concrete εcð Þ are moving
towards and approaching their true values. However, these estimates do not fully
stabilize and fluctuate until the end of the time history, because there is not enough
information about these two parameters in the output measured response. In the
case of the batch estimation approach (Fig. 6), the number of iterations corresponds
to the number of evaluations of the objective function defined in Eq. (10). As
explained in (Ebrahimian et al. 2016), the spike-like behavior in the convergence
histories of the estimated model parameters is due to perturbations applied by the
optimization algorithm to escape from the attraction zones of local minima. Both
batch estimation solutions (marked by dots in Fig. 6) converge to the true values of
the parameters; however, a large number of iterations is required for the extended
estimation process, when r and the FE model parameters θ are estimated jointly.

Figure 7 shows the convergence histories of the measurement noise variances of
the six output response measurements obtained using the batch approach. It is noted
that aij represents the relative acceleration response of floor i in direction j, where
l = longitudinal and t = transverse direction, respectively. The measurement noise
variances are correctly estimated for all the response measurements considered,
converging to normalized values (with respect to the true variances) between 0.92
and 1.07.
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The relative root mean square error (RRMSE) between the true (noiseless
simulated) relative floor acceleration response time histories and their estimated
counterparts obtained using the final estimates of the FE model parameters (θ ̂)
are computed and reported in Table 3. The RRMSE between two digital signals s1

and s2 with s1 taken as the reference signal is computed as

RRMSE ð%Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 N̸s∑Ns

k=1 s1k − s2k
� �2h ir

̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 N̸s∑Ns

k=1 s1k
� �2h ir

×100, where Ns

denotes the total number of data samples (i.e., length) of the signals. The RRMSEs
between the true (noiseless) response time histories and their counterparts obtained
using the initial estimates of the model parameters (θ ̂0) are also provided for
comparison purposes. The very small RRMSEs obtained between the true
responses and their estimated counterparts based on final estimates of the FE model
parameters confirm the successful performance of all the estimation methods
considered herein. These results also confirm that the output measured responses
are not very sensitive to the model parameters bcol and εc, i.e., y does not contain
enough information about these two parameters.
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Fig. 7 Convergence histories of the measurement noise variances using the batch approach

Table 3 Relative root mean square error (in %) between the true (noiseless) and estimated relative
acceleration response time histories

Estimation method Output response measurement
a3l a5l a6l a3t a5t a6t

θ ̂0 – 58.89 38.33 37.86 39.62 45.48 40.64

θ ̂ UKF 0.41 0.28 0.23 0.24 0.24 0.25
EKF 0.56 0.28 0.22 0.33 0.25 0.30
Batch with noise var. estimation 0.25 0.22 0.20 0.24 0.22 0.22
Batch without noise var. estimation 0.26 0.22 0.22 0.27 0.24 0.26
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The updated FE model can be used to reconstruct unobserved (unmeasured)
responses quantities at global and local levels that can be used to define and quantify
damage indices from which the degree of damage throughout the structure can be
assessed. Such damage indices include those based on maximum inelastic defor-
mation responses at different scales (e.g., maximum displacement or curvature or
strain ductility factors) or normalized cumulative hysteretic energy dissipated (e.g.,
cumulative displacement, curvature or strain ductility) as a measure of cumulative
damage (e.g., low-cycle fatigue), or a combination of both (Cosenza et al. 1993; Park
et al. 1985). Figure 8 compares different force-deformation response histories at
different scales (structure, section and fiber levels) computed with the true FE model
parameters and with the final estimates of the model parameters obtained using the
UKF and batch (without noise variance estimation) approaches. The total base shear
in the longitudinal and transverse directions (Vx

b and V
z
b, respectively) normalized by

the total weight of the building Wð Þ versus the roof drift ratio in the corresponding
direction (RDRx and RDRz) are plotted in Fig. 8a, b, respectively. The moment Mð Þ
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Fig. 8 Comparison of unobserved FE responses computed with the true FE model parameters and
final estimates of the FE model parameters obtained using the UKF and batch (without noise
estimation) estimation approaches: a normalized base shear versus roof drift ratio in the
longitudinal direction, b normalized base shear versus roof drift ratio in the transverse direction,
c moment versus curvature at the base of a column (section 1−1 in Fig. 1a), d moment versus
curvature at the end of a longitudinal beam (section 2−2 in Fig. 1a), e stress versus strain of a
reinforcing steel fiber at the bottom of a column (section 3−3 in Fig. 1a), f stress versus strain of a
concrete fiber at the end of a transverse beam (section 4−4 in Fig. 1a)
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versus curvature κð Þ for sections at the base of a column (section 1−1 in Fig. 1a) and
at the end of a 2nd floor longitudinal beam (section 2−2 in Fig. 1a) are shown in
Fig. 8c, d, respectively. Fiber level responses are presented in Fig. 8e, f, where the
stress (σ) versus strain (ε) of a monitored reinforcing steel fiber at the bottom of a
column (section 3−3 in Fig. 1a) and a monitored concrete fiber at the end of a 2nd
floor transverse beam (section 4−4 in Fig. 1a) are plotted. The excellent agreement
between the true and estimated response based on the final estimates of the model
parameters corroborates that the updated FE models can be reliably used for damage
identification purposes.

3.2 Computational Cost

In spite of the low-cost high computational power available nowadays, integration
of high-fidelity mechanics-based nonlinear FE structural modeling and Bayesian
inference methods still requires a significant amount of computational resources and
time. Therefore, it is important to study the computational cost associated to the
different FE model updating methods. Table 4 reports the wall-clock time required
for each estimation approach to update the nonlinear FE model considered herein.
The FE model updating using the batch and recursive estimation approaches were
run on a desktop workstation with an Intel Core i7 CPU 860 2.80 GHz with 8 GB
RAM and a desktop workstation with an Intel Xeon 2.66 GHz processor and
48 GB random-access memory, respectively. The wall-clock time required by the
batch approach is 45 to 50% lower than that required by the recursive approaches.

4 Conclusions

This study investigated and compared the performance of a new framework to
identify and update mechanics-based nonlinear structural finite element (FE) mod-
els using different Bayesian estimation methods. The framework uses recorded
input-output data to estimate unknown parameters of advanced mechanics-based
nonlinear FE models of the structure of interest, using both batch and recursive
approaches. The batch estimation approach consisted of the maximum a posteriori
(MAP) method, which results in a nonlinear optimization problem that is solved

Table 4 Wall-clock time required for the estimation process of different methodologies

Estimation method Wall-clock time (hours)

UKF 105
EKF 93
Batch with noise variance estimation 64
Batch without noise variance estimation 52
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using the interior point method, a gradient-based optimization algorithm. The
Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were employed
as recursive Bayesian estimation methods.

The proposed methodology was verified using numerically simulated structural
response data for a three-dimensional five-story two-by-one bay reinforced concrete
(RC) frame building subjected to bi-directional horizontal earthquake excitation.
Parameters characterizing the nonlinear material constitutive laws of the reinforcing
steel and concrete materials were successfully estimated using the noiseless seismic
input data together with limited noisy output response data (6 relative acceleration
response time histories). Accurate results were obtained with both batch and
recursive estimation methods. Comparison of unobserved response quantities at
different scales (structure, component, section and fiber levels) obtained from the
updated FE model and the corresponding “true” responses demonstrated the
capabilities of the proposed framework for (nonlinear) damage identification pur-
poses. Thus, the updated FE model can be used to reconstruct unmeasured struc-
tural responses from the global to local levels. The reconstructed inelastic structural
response can be utilized to estimate mechanics-based damage indices and therefore
to assess the type and level of damage throughout the structure.

It is noteworthy that the proposed framework is not limited to certain types of FE
models, loading conditions, or FE model parameters. Different types of material
constitutive models, various types of FE modeling approaches and different types of
analysis (e.g., quasi-static, time-dependent, dynamic) can be used with the proposed
framework. Furthermore, other time-invariant FE model parameters (e.g., inertia,
damping, geometric, and constraint parameters) can be incorporated in the esti-
mation procedure.
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Reliability Updating in the Presence
of Spatial Variability

Daniel Straub, Iason Papaioannou and Wolfgang Betz

Abstract During the construction and operation of engineering systems, infor-
mation on their properties and performance becomes available through monitoring
and other means of observation. Such information can be used to update predictions
of the system’s reliability through a Bayesian analysis. We present Bayesian
analysis and updating of the reliability of engineering systems that depend on
physical quantities that vary randomly in space, which are modelled by means of
random fields. The numerical treatment of random fields requires their discretiza-
tion with a finite number of random variables. To this end, we employ the
Expansion Optimal Linear Estimation (EOLE) method, which is shown to be
especially efficient in obtaining an approximation of a second-order random field.
This property is beneficial for Bayesian analysis in cases where the moment
function depends on hyperparameters, such as the correlation length of a random
field. We discuss the application of EOLE in the context of BUS, which is a
recently proposed framework for Bayesian updating of parameters of engineering
systems and the resulting system reliability. In BUS, monitoring data is expressed
in terms of an equivalent limit state function such that Bayesian updating can be
performed with structural reliability methods. We apply BUS with EOLE to update
the reliability of the stability of a foundation resting on spatially variable soil with
deformation measurements obtained at an intermediate construction stage.

1 Introduction

Structural reliability is commonly used to assess existing structures, which do not
comply with codes and standards due to deterioration or changes in system prop-
erties, system demands or code requirements (Ellingwood 1996; Straub and Der
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Kiureghian 2011). Reliability methods have also been employed to appraise the
effect of inspection on the reliability of structures and to optimize inspection efforts
(Madsen et al. 1989; Faber et al. 2005; Goulet et al. 2015). Along the same lines,
they have been utilized to assess the effect of structural health monitoring on a
structural system (Pozzi and Der Kiureghian 2011) or site investigations in
geotechnical engineering (Papaioannou and Straub 2012). With technological
advances in monitoring technology, collecting additional data on structural per-
formance becomes easier and cheaper, and methods to assess the effect of data on
the system reliability are thus increasingly required for existing and new structures.

Data influences the system reliability by reducing uncertainty. Strictly, the
reliability of an engineering system is not altered by the collection of information
alone (Kiureghian 1989; Der Kiureghian and Ditlevsen 2009). However, it is
altered by the actions that follow the collection of information. If the reduced
uncertainty leads to more targeted actions, sufficient reliability is ensured with
lower cost. Bayesian analysis is ideally suited to quantitatively assess the effect of
data on the reliability, risk and cost. It allows to consistently combine the data with
existing probabilistic models of structural systems, which is particularly relevant
when dealing with (rare) failure events (Straub et al. 2016).

When combining data with probabilistic models for reliability analysis, it is
often necessary to utilize more advanced mechanical models than for design pur-
poses. Predictions made with simplified (empirical) models used in design pro-
cesses may not match with the observations on the real structures. One prominent
example is the treatment of spatially variable material or soil properties. While it is
commonly possible and reasonable to represent such properties by an equivalent
homogenous parameter in design calculations, such models can be oversimplifying
and lead to erroneous predictions when including data (Papaioannou and Straub
2016). Therefore, there is a significant interest to enable a Bayesian updating of
mechanical models with spatially distributed properties for the purpose of reliability
assessment.

Bayesian analysis of spatially variable properties is an active field of research
(e.g., Marzouk et al. 2007; Koutsourelakis 2009). However, only few investigations
on reliability updating in the presence of spatial variability are documented in the
literature. These include applications to geotechnical engineering (Papaioannou and
Straub 2012), seismic risk (Bensi et al. 2015) and deteriorating structures (Straub
2011b).

This contribution focuses on the representation of random fields in the context of
Bayesian analysis and reliability updating. In particular, we discuss the computa-
tional benefits of utilizing the Expansion Optimal Linear Estimation (EOLE) pro-
posed in (Li and Der Kiureghian 1993) for discretizing the random field when the
a-priori correlation length is uncertain. The recently proposed BUS approach to
Bayesian analysis and reliability updating is shortly summarized and its application
in the context of random fields is discussed. To demonstrate the approach, we
consider an application from geotechnical engineering, where it is common to use
observations during the construction phase to ensure the safety of the site; a process
that is known as the observational method.
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2 Methodology

2.1 Random Field Discretization

Random fields are used to describe spatially variable uncertain parameters. Com-
mon examples are soil parameters in geotechnical engineering, environmental loads
in structural engineering and topology of multiphase materials in biomechanics.
A random field XðtÞ is defined as a collection of random variables indexed by a
continuous spatial parameter t∈ Ω⊂ℝd, with d denoting the spatial dimension. The
random field is termed second order if it has finite mean and variance functions. To
completely define the random field XðtÞ, the joint distribution of the random
variables X t1ð Þ, X t2ð Þ, . . . , X tnð Þf g for any n, t1, t2, . . . , tnf g must be specified.
This is straightforward when the random field is Gaussian (i.e. the random variables
X t1ð Þ,X t2ð Þ, . . . ,X tnð Þf g have the multivariate normal distribution) and the mean

function μ tð Þ and the autocovariance function C t1, t2ð Þ are known. However, if the
marginal distribution of XðtÞ is not Gaussian, then a complete definition of the
random field in terms of its first and second moment functions is in general not
possible. A class of non-Gaussian random fields, termed translation fields, can be
defined by a nonlinear transformation of an underlying Gaussian field of the form

X tð Þ=F − 1
X Φ U tð Þð Þ, t½ � ð1Þ

where F − 1
X is the inverse of the non-Gaussian marginal distribution, Φ is the

standard normal distribution and U tð Þ is a Gaussian random field with zero mean
and unit variance. The joint distribution for any selection of points in the spatial
domain can then be modeled by a Gaussian copula, also known as the Nataf
multivariate distribution (Nataf 1962; Der Kiureghian and Liu 1986). The specifi-
cation of the auto-correlation coefficient function of U zð Þ in terms of the one of X tð Þ
involves solving an integral equation.

A random field is said to be second-order (or weakly) homogeneous if its
probabilistic structure is invariant to a shift in the spatial parameter up to a second
order. A second-order homogeneous random field has constant mean and variance
functions and its autocovariance function depends on the difference in location, i.e.
C t1, t2ð Þ→C Δtð Þ where Δt= t1 − t2. The spatial variability of a second-order
homogeneous random field is defined by the autocorrelation coefficient function
ρ Δtð Þ= C Δtð Þ

σ2 , with σ2 being the variance of the random field. A common measure
of the spatial variability is the scale of fluctuation θ, defined as the integral of ρ Δtð Þ
(Vanmarcke 2010). The smaller θ is, the higher is the variability in the sample
functions of the random field. An alternative measure for the spatial variability is
the correlation length l, defined as the distance l= Δtk k for which ρ Δtð Þ= e− 1 (Li
and Der Kiureghian 1993).

In order to numerically represent the random field X tð Þ, it is necessary to dis-
cretize it with a finite number of random variables. Several methods have been
proposed for the discretization of random fields, see (Sudret and Der Kiureghian
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2000) for a comprehensive review. The efficiency of random field discretization
methods depends on their ability to approximate accurately the random field with as
few random variables as possible. Accuracy is defined in terms of an error measure
such as the mean-square error or the variance error. Efficient random field repre-
sentations involving small numbers of random variables are beneficial for most
numerical methods for uncertainty quantification and reliability analysis.

Random field discretization methods include point methods, spatial average
methods and series expansion methods. In point and spatial average methods, the
random field is expressed in terms of random variables that correspond to spatial
points or averages of discrete parts of the spatial domain. Series expansion methods
express the random field as a superposition of products of deterministic spatial
functions and random variables, such that each random variable in the expansion
has a global influence in the approximation of the random field. Through a proper
choice of the spatial functions, series expansion methods are able to describe the
spatial variability accurately with much fewer random variables as compared to
point or average methods (Sudret and Der Kiureghian 2000). Popular series
expansion methods include orthogonal series expansions (Zhang and Ellingwood
1994), the Karhunen-Loève (KL) expansion (e.g., Ghanem and Spanos 1991) and
the expansion optimal linear estimation (EOLE) method (Li and Der Kiureghian
1993).

The spatial functions in orthogonal series expansions are chosen as orthogonal
functions on the domain of definition of the random field (Zhang and Ellingwood
1994). In particular, the KL expansion employs the eigenfunctions of the autoco-
variance function of the random field, which are shown to be the optimal choice
among all sets of orthogonal functions in the sense that they minimize the global
mean square error of the discretization (Ghanem and Spanos 1991). Determination
of the eigenfunctions in the KL expansion requires the solution of an integral
eigenvalue problem. Aside from a few specific cases, the integral eigenvalue
problem needs to be solved numerically resulting in an approximation of the KL
expansion. Application of Galerkin-based methods for the solution of the integral
eigenvalue problem is time consuming, as they require the assembly of a matrix
eigenvalue problem through performing a two-folded integration over the spatial
domain (Betz et al. 2014).

The EOLE method proposed in (Li and Der Kiureghian 1993) combines con-
cepts from linear estimation theory and principle component analysis to derive the
spatial functions in the representation of the random field. The method can be
understood as a numerical KL expansion for the case where the KL eigenvalue
problem is solved by the Nyström method (Betz et al. 2014). However, EOLE has
the advantage over the Galerkin-based KL expansion that integration is not required
to assemble the matrix eigenvalue problem. Hence, the method is particularly
efficient in determining the spatial functions in the random field representation. This
can be of advantage if the random field description changes throughout the com-
putation, as is the case in Bayesian analysis when the autocovariance function of the
random field is described by uncertain (hyper-) parameters.
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In the EOLE method, the discrete representation bX tð Þ of the random field X tð Þ
reads

bX tð Þ= μ tð Þ+ ∑
m

i=1

ξiffiffiffiffi
λi

p Cq tð ÞTvi ð2Þ

Here, fλi, vig are the eigenpairs of the covariance matrix of the random variables
X zj
� �

corresponding to a set of spatial points ftj, j=1, . . . , qg and Cq tð Þ is a q×1
vector function with j element C t, tj

� �
(Li and Der Kiureghian 1993). The eigen-

pairs fλi, vig are evaluated through solving the following matrix eigenvalue
problem

Cvi = λivi ð3Þ

where C is the covariance matrix of the spatial points with ði, jÞ element C ti, tj
� �

.
The eigenpairs are arranged in decreasing order of magnitude of the eigenvalues
and the first m terms are retained in the EOLE representation. The variables
ξi, i=1, . . . ,mf g are zero mean orthonormal random variables. If the random field

is Gaussian, then ξi, i=1, . . . ,mf g are independent standard normal random
variables. If it is non-Gaussian then it is not always possible to determine the joint
distribution of ξi, i=1, . . . ,mf g. Therefore, if the random field is defined by a
transformation of the type of Eq. (1), it is convenient to apply the EOLE method to
discretize the underlying Gaussian field.

The point-wise variance of the EOLE truncation error of X tð Þ is given by (Li and
Der Kiureghian 1993):

Var X tð Þ− bX tð Þ
h i

=Var X tð Þ½ �− ∑
m

i=1

1
λi

Cq tð ÞTvi
� �2 ð4Þ

This equation can be used to determine the number of terms m in the EOLE
representation for a desired accuracy in the approximation of the random field.

2.2 Reliability Analysis

Structural Reliability Methods (SRM) have been developed since the 1970 s for
computing the (small) probability of failure of engineering systems (e.g., Rackwitz
and Fiessler 1978; Der Kiureghian and Liu 1986). The failure event F is described
in terms of a limit state function g Xð Þ, where X= ½X1;X2; . . . ;Xn� is the vector of
the n input random variables. By definition, the event F corresponds to
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F = fg Xð Þ≤ 0g ð5Þ

It is helpful to interpret the SRM geometrically: ΩF corresponds to the domain in
the outcome space of X for which g xð Þ≤ 0. The probability of the event F is the
probability of X taking a value within ΩF . It can be computed by integrating the
joint probability density function of X, denoted by f ðxÞ, over ΩF:

Pr Fð Þ=
Z
ΩF

f xð Þdx1dx2 . . . dxn ð6Þ

More generally, the event of failure can be defined through a system formulation,
as a function of multiple component failure events Fi with corresponding limit state
functions gi. The system failure domain is (Der Kiureghian 2005):

ΩF = min
1≤ k≤K

max
i∈ I1

gi xð Þ, . . . , max
i∈ IK

gi xð Þ
� �

≤ 0
� �

, ð7Þ

where Ik is an index set corresponding to the kth cut set of the system. For K =1,
this reduces to a parallel system reliability problem; for the case that each cut set
contains only one index, this reduces to a series system.

To solve Eq. (6), most SRM involve a transformation of the problem from the
original space of the random variables X to the space of independent standard
normal random variables U by a suitable transformation U=TðXÞ. If the joint
distribution of X is of the Gaussian copula class, the transformation of (Der
Kiureghian and Liu 1986) can be applied; if the joint distribution of X is of any
arbitrary form, the Rosenblatt transformation can be used (Hohenbichler and
Rackwitz 1981). Let G denote the transformed limit state function in standard
normal space:

G Uð Þ= gðT− 1ðUÞÞ ð8Þ

where T− 1 Uð Þ=X is the inverse transformation from standard normal space to the
original outcome space of the random variables. The transformation T is probability
conserving, therefore Pr Fð Þ= Pr g Xð Þ≤ 0ð Þ= Pr G Uð Þ≤ 0ð Þ. In analogy to Eq. (6),
the probability of the failure event F is computed by

Pr Fð Þ=
Z

G uð Þ≤ 0

φ uð Þdu1du2 . . . dun, ð9Þ

where φ is the independent standard multivariate normal probability density
function (PDF).
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A potentially highly efficient method for approximating the probability of failure
is the First-Order Reliability Method (FORM). It approximates the limit state
function G Uð Þ by a first-order Taylor expansion at the expansion point u*, denoted
by G′ Uð Þ. To limit the approximation error, u* is selected as the point in the failure
domain with the highest probability density value, the most likely failure point
(MLFP). The MLFP is found as the point in the domain G′ Uð Þ≤ 0

	 

closest to the

origin (Der Kiureghian 2005). The probability Pr G′ Uð Þ≤ 0
� �

is equal to the stan-
dard normal CDF Φ evaluated at − βFORM, where βFORM = j u*�� ��j is the distance of
u* from the origin (for values of Pr G′ Uð Þ≤ 0

� �
<0.5Þ. The FROM approximation

is therefore

Pr Fð Þ≈ Pr G′ Uð Þ≤ 0
� �

=Φ − βFORMð Þ. ð10Þ

The computational bottleneck of FORM is the identification of the design point
u* through the solution of a constrained geometrical optimization problem. Tailored
algorithms exist for this purpose (Liu and Der Kiureghian 1991). Since these are
gradient-based methods, the computational cost of the optimization increases with
increasing number of dimensions n. FORM-based methods can nevertheless be
applied for higher-dimensional problems (Rackwitz 2001; Allaix and Carbone
2015), and have also been shown to perform well for Bayesian updating problems
(Straub et al. 2016).

As an alternative to FORM, in this contribution we apply subset simulation
(SuS), a SRM that is tailored to work well for problems with larger numbers of
random variables. SuS, originally developed in Au and Beck (2001), is an adaptive
simulation method. It is based on expressing PrðFÞ as a product of larger condi-
tional probabilities. The conditional probabilities are defined in terms of a set of
nested intermediate failure events F0 ⊃F1⊃⋯⊃FM =F, where F0 denotes the
certain event. The probability PrðFÞ can be expressed as:

Pr Fð Þ= Pr ⋂
M

i=1
Fi

� 
= ∏

M

i=1
Pr FijFi− 1ð Þ ð11Þ

The intermediate events are defined in standard normal space as
Fi = fG Uð Þ≤ big, where b1 > b2 >⋯> bM =0. The values of bi are chosen adap-
tively such that the estimates of the conditional probabilities correspond to a chosen
value p0, where typically p0 is chosen as 0.1. To find bi, samples of U conditional
on the intermediate failure event Fi− 1 are generated through a Markov Chain
Monte Carlo (MCMC) sampling. While SuS can also work in the outcome space of
X, the definition of the problem in standard normal space is advantageous as it
enables a simpler and efficient MCMC sampling, as shown in (Papaioannou et al.
2015).
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2.3 Bayesian Analysis and Reliability Updating

With monitoring or inspections, data d becomes available, providing information
directly or indirectly on the random variables X in the limit state function. This data
can be used to update the prior probability distribution fX to a posterior distribution
fXjd following Bayes’ rule:

fXjdðxÞ∝L xð ÞfXðxÞ ð12Þ

L xð Þ= fDjXðdjxÞ is the likelihood function describing the data. The difficulty lies
in the computation of the proportionality constant in Eq. (11). In most cases,
analytical solutions are not available and sampling-based approaches are necessary
instead (Gelman et al. 2014). MCMC methods are commonly applied for this task,
resulting in (correlated) samples from fXjd (Beck and Au 2002; Ching and Chen
2007; Straub and Kiureghian 2008; Betz et al. 2016).

The updated probability of failure conditional on the data PrðFjdÞ can – in
principle – be calculated by evaluating Eq. (6) with fX replaced by fXjd. However, if
fXjd is known only approximately through samples of the distribution, most struc-
tural reliability methods are not directly applicable to evaluate Eq. (6). Hence this
approach, albeit seemingly straightforward, does not generally lead to efficient or
simple solutions for computing PrðFjdÞ.

As an alternative to the direct method, (Straub and Papaioannou 2015), based on
earlier ideas from (Straub 2011a), proposed the BUS (Bayesian Updating with
SRM) method. It circumvents the problem by formulating an equivalent observa-
tion event Z describing the data, which can be used to perform Bayesian analysis
within the framework of SRM. The observation event is defined as

Z = P≤ cL Xð Þf g, ð13Þ

where P is a random variable with standard uniform distribution, and c is a constant
that is chosen to ensure that cL xð Þ≤ 1 for any x.

The observation event Z is equivalent to d in the sense that updating X with the
event Z leads to the same posterior distribution as updating with d, fXjZ = fXjd, as
shown in (Straub and Papaioannou 2015). Hence it follows that also
PrðFjZÞ= PrðFjdÞ.

The advantage of defining the data through Z is that this event can be repre-
sented by a limit state function

h p, xð Þ= p− cL xð Þ, ð14Þ

such that Z = fh P,Xð Þ≤ 0g, in analogy to the definition of the failure event,
Eq. (5).
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The conditional probability of failure is (Madsen 1987)

Pr FjZð Þ= Pr F ∩Zð Þ
PrðZÞ , ð15Þ

which corresponds to solving two structural reliability problems:

Pr FjZð Þ= Pr g Xð Þ≤ 0 ∩ h P,Xð Þ≤ 0½ �
Pr h P,Xð Þ≤ 0½ �

=
∫ g xð Þ≤ 0 ∩ h p, xð Þ≤ 0 fX xð Þdp dx1dx2 . . . dxn

∫ h p, xð Þ≤ 0 fX xð Þdp dx1dx2 . . . dxn

ð16Þ

The numerator is a system reliability problem, whereas the denominator is a
component reliability problem whose limit state function is Eq. (13).

In most cases, it is beneficial to solve Eq. (15) in standard normal space. The
observation limit state function H in standard normal space is

H uð Þ= u0 −Φ− 1 cL T− 1 u1, . . . , unð Þ� �� �
. ð17Þ

with Φ− 1 being the inverse standard normal CDF. U0 is the standard normal
random variable corresponding to P. The probability of the failure event F con-
ditional on the data can now be expressed in terms of the standard normal U:

Pr FjZð Þ= Pr G Uð Þ≤ 0 ∩H Uð Þ≤ 0½ �
Pr H Uð Þ≤ 0½ �

=
∫ G uð Þ≤ 0 ∩H uð Þ≤ 0 φ uð Þdu0du1 . . . dun

∫ H uð Þ≤ 0 φ uð Þdu0du1 . . . dun

ð18Þ

Any SRM is applicable to solve Eq. (15) or (17). Here, SuS is employed as it is
efficient in high dimensions. In Eq. (17), the numerator is a subset of the denom-
inator. This allows to reuse the samples generated in the last step of the computation
of the denominator in the SuS run for computing the numerator, as described in
(Straub et al. 2016).

The BUS algorithm implemented with SuS is illustrated in Fig. 1.

2.4 Reliability Updating with Random Fields

Application of BUS for reliability updating with random fields requires the solution
of the integrals in Eq. (15), whereby both integrals are infinite dimensional because
a random field consist of an infinite number of random variables. In practice, the
random field is represented by a finite number of random variables through the
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random field discretization, e.g. according to Eq. (2). If the random field is a
translation field and the EOLE method is applied to discretize the underlying
Gaussian random field, then the random variables in the discretization are already
independent standard normal and a transformation to a standard normal space is not
required.

If the variability of the random field is high, reflected by a small scale of
fluctuation, then a large number of random variables will be needed to obtain a
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(c) Samples conditional on Z and F

Fig. 1 Illustration of BUS with subset simulation: a Initial (Monte Carlo) sampling. The surface
of the first subset is indicated with dashed lines. The darker dots correspond to the samples that
fall into this subset and are used as seeds in the MCMC algorithm to generate the samples
conditional on the first subset. b Samples generated conditional on the observation,
Z = fH Uð Þ≤ 0g. c Samples generated conditional on the observation and the failure event,
Z ∩F = fH Uð Þ≤ 0 ∩G Uð Þ≤ 0g. These are the final samples
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small variance error in the EOLE representation. In such case, it is beneficial to
apply a SRM that is able to handle efficiently high dimensional problems. In this
study, SuS is employed for this purpose.

A main challenge when dealing with random fields in the context of Bayesian
updating is the choice of the prior distribution. Prior distributions should reflect the
knowledge available before the observations. Often there is uncertainty on the prior
knowledge of the parameters of the marginal distribution FX and/or covariance
structure of the random field. This uncertainty can be included through introducing
additional random variables. In Bayesian analysis, such random variables are ter-
med hyperparameters to distinguish them from the parameters of the model of the
underlying system. Once hyperparametes are included, the probabilistic description
of the random field becomes conditional on outcomes of the hyperparameters. This
implies that for each realization of the hyperparameters, the spatial functions in the
EOLE representation will change. However, as discussed in Sect. 2.1, EOLE is
particularly efficient in obtaining the spatial functions, as the assembly of the matrix
eigenvalue problem of Eq. (3) can be done in an efficient manner.

If the spatial covariance structure of the random field is represented by means of
hyperparameters, the error measure in Eq. (4) depends on the realization of the
hyperparameters. A constant (small) error that is independent of the realization of
the hyperparameters can only be achieved if the number of EOLE-terms (and, thus,
the number of random variables) is selected conditional on the hyperparameters.
However, inference algorithms typically require the number of random variables to
be constant throughout the analysis. To avoid this problem, the number of
EOLE-terms is selected conservatively in this study, by choosing a number of
EOLE terms that leads to an acceptable discretization error for most realizations of
the hyperparameters. Thereby, it is necessary to verify that for the prior covariance
structure with high posterior density the error term is still acceptable.

It is noted that a-posteriori the first- and second-order statistics of the random field
will differ from the ones prior to the measurements. For instance, a random field that
is second-order homogeneous a-priori will no longer be homogeneous a-posteriori,
because of the influence of the locality of the measurements. If the spatial variability
of the random field increases considerably conditional on the measurements, the
number of random variables in the random field representation of the prior random
field might not be sufficient for representing the posterior field. The posterior rep-
resentation of the random field should therefore be carefully checked.

3 Numerical Investigations

3.1 Problem Description

We consider a problem from geotechnical engineering: The stability of an eccen-
trically loaded foundation is investigated. Serviceability of the foundation is
ensured if the inclination α of the foundation under the final loading P is smaller
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than 4 degrees; i.e. the limit-state function describing the associated reliability
problem is: g Xð Þ=4◦ − α Xð Þ. The foundation is bedded on a soil layer that has a
depth of 8 m. The soil is modeled as linear elastic, with a Young’s modulus E that
is spatially variable, hence described by random field, and a fixed Poisson ratio of
0.35. Beneath the soil layer, a sandstone layer is located, whose influence on the
analysis is negligible.

The investigated foundation has a width of 1.5 m; after construction it is loaded
eccentrically with load P (Fig. 2). The lever arm of the load is 0.5 m. The load P is
uncertain: it follows a Gumbel distribution with mean 1MN and 10% coefficient of
variation. At an intermediate construction stage, a centric load F of 0.4MN is
applied. The displacements under F at the left and right ending of the foundation are
measured xl̂ =1 cm and xr̂ =1.5 cm, see Fig. 2. We utilize an additive model for the
combined measurement/modeling errors; the error follows a normal distribution
with zero mean and a standard deviation of σε =0.5 cm. The errors associated with
xl̂ and x ̂r are correlated with a correlation coefficient of ρ=0.9. It is therefore
implied that modeling errors are dominating over measurement errors.

The Young’s modulus E of the soil layer is modeled as lognormal random field
with a mean of 40 MPa and a coefficient of variation of 50%. The correlation
coefficient function between points t1 and t2 of the underlying Gaussian random
field is ρðΔtÞ=exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2x +Δt2z

p
l̸

� �
, where Δtx and Δtz are the horizontal and

vertical distance between points t1 and t2, and l is the correlation length. The
correlation length l is modeled as uncertain. As prior distribution for l we select a
lognormal distribution that has mean 4 m and a coefficient of variation of 100%.

On each side of the foundation, a soil-stripe of 15 m is modeled explicitly. The
random field is discretized using the EOLE method. The EOLE discretization points
are distributed uniformly over the domain with 25 points per square meter. The 200
most important terms in EOLE are used to represent the random field.

F

0.75m0.75m

m1=10mm m2=15mm

(a) measurements:

P

0.25m1.25m



Fig. 2 Loading of the
foundation (a) during the
measurements and (b) in the
final state
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The mechanical model is discretized and solved by means of higher-order finite
elements (Szabó et al. 2004). The finite element mesh of the mechanical model is
depicted in Fig. 3. The order of the shape functions of the mechanical model is 4.

Samples of the posterior are obtained by means of BUS-SuS with 1000 samples
per level. The posterior probability of failure is obtained by an additional run of SuS
with 1000 samples per level using the generated posterior samples as basis. Sam-
ples of the prior are generated directly. The two computationally challenging tasks
are (i) the discretization of the prior random field conditional on the current value of
the hyperparameters, and (ii) the computation of the finite element model. In the
example at hand, the computational costs of the random field discretization dom-
inate the overall computational costs.

3.2 Results and Discussion

The prior probability of failure is 10− 2. The posterior probability of failure con-
ditional on the settlement measurements x ̂l and xr̂ is 3 ⋅ 10− 4. The probability of
failure estimate is therefore significantly reduced by the measurements performed at
the intermediate construction stage.

To further investigate the effect of the measurement on the random variables and
the failure event, Table 1 provides mean values and standard deviations of the final
load P, correlation length1 l, and inclination and center settlement of the foundation
at final loading under different information. The prior case is compared to different
posterior cases: (m) conditional on the measurement, (F) conditional on failure of
the foundation (without measurement), and (m&F) conditional on measurement and

Fig. 3 Finite element mesh used to discretize the soil in the mechanical model: the order of the
shape functions is 4

1Note that the correlation length is defined only for the a-priori case, when the random field is
stationary. Strictly, l is the hyperparameter representing the correlation length of the prior random
field.
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failure. The statistics conditional on failure provide an indication of the parameter
values in a failure case, similar to the design point in a FORM analysis.

As expected, the distribution of the final load P is not influenced by measuring
displacements in the intermediate construction stage (the m case). However, the
mean of P in the case of failure without measurement is lower than in the case with

(a) conditional on measurements 

(b) conditional on foundation failure 

(c) conditional on measurements and foundation failure 

Fig. 4 Expected values of the soil stiffness for the three different posterior cases
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measurements. Since the measurements reduce the probability of failure, a larger
value of P is required in this case to lead to failure.

The expected correlation length l is decreased by the performed measurements.
Interestingly, without measurements, larger correlation lengths are associated with
failure, whereas smaller correlation lengths are associated with failure once

(a) conditional on measurements  

(b) conditional on foundation failure 

(c) conditional on measurements and foundation failure 

Fig. 5 Standard deviation of the soil stiffness for the three different posterior cases
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measurements are considered. This indicates that without the measurements, the
foundation is expected to fail due to a globally reduced soil stiffness. In contrast,
after the measurements are performed, failure is expected as a consequence of a
locally reduced soil stiffness.

Even though the measurements clearly reduce the probability of failure, the
expected inclination and the expected center settlement of the foundation under
final loading are only marginally influenced by the observations. This shows that
the main reason for a reduction in the probability of failure is the reduced uncer-
tainty on the soil parameters.

The mean value of the soil stiffness is plotted in Fig. 4 for the three posterior
cases. The corresponding standard deviations are illustrated in Fig. 5. The mea-
surements performed at the intermediate construction stage suggests that the stiff-
ness of the soil under the foundation is slightly larger on the left-hand side of the
foundation than on the right-hand side (Fig. 4a). Conditioning on failure without
the measurements, the expected stiffness of the soil is reduced beneath the foun-
dation with a small shift to the right that increases the inclination of the foundation
(Fig. 4b). When conditioning on failure including the measurements, the expected
stiffness of the soil suggests a weak spot below the right side of the foundation
(Fig. 4c).

The plots of the standard deviations (Fig. 5) show that the standard deviation is
primarily reduced in the areas where the mean stiffness changes from the prior to
the posterior. These are the areas for which the conditioning on the deformation
measurements provides information.

4 Concluding Remarks

Bayesian analysis and reliability updating is a consistent and potentially powerful
method to incorporate and combine different information sources for predicting the
performance of an engineering system. In many instances, spatially varying prop-
erties in these systems should be explicitly represented through random fields. This
can lead to potentially demanding computations, and efficient methods for random
field discretization are required. In this contribution, we discuss that the EOLE
method is beneficial if the analysis includes a random field with an uncertain
covariance structure. In these cases, the random field representation will alter in
function of the covariance structure, and the efficiency of EOLE in obtaining an
approximation of the random field leads to overall reduced computational effort.
For Bayesian analysis we apply the BUS approach, which enables the use of
classical structural reliability methods to compute the posterior distribution and
reliability. The procedure is applied to the updating of the reliability of a shallow
foundation with results from displacement measurements. Numerical results show
that the reliability estimate can be significantly lowered by including such mea-
surements even if the posterior mean estimates of the soil properties are not more
favourable than a-priori, due to the reduction of the uncertainty. Closer
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investigation showed that the consideration of the uncertainty in the covariance
structure of the random field leads to significant changes in the likely failure modes
from the a-priori to the posterior case.
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Bayesian Networks and Infrastructure
Systems: Computational
and Methodological Challenges

Francesco Cavalieri, Paolo Franchin, Pierre Gehl and Dina D’Ayala

Abstract This chapter investigates the applicability of Bayesian Network methods
to the seismic assessment of large and complex infrastructure systems. While very
promising in theory, Bayesian Networks tend to quickly show limitations as soon as
the studied systems exceed several dozens of components. Therefore a benchmark
study is conducted on small-size virtual systems in order to compare the compu-
tational performance of the exact inference of various Bayesian Network formu-
lations, such as the ones based on Minimum Link Sets. It appears that all
formulations present some computational bottlenecks, which are either due to the
size of Conditional Probability Tables, to the size of clique potentials in the
junction-tree algorithm or to the recursive algorithm for the identification of Min-
imum Link Sets. Moreover, these formulations are limited to connectivity prob-
lems, whereas the accurate assessment of infrastructure systems usually requires the
use of flow-based performance indicators. To this end, the second part of the
chapter introduces a hybrid approach that presents the merit of accessing any type
of system performance indicator: it uses simulation-based results and generates the
corresponding Bayesian Network by counting the outcomes given the various
combinations of events that have been sampled in the simulation. The issue of the
system size is also addressed by a thrifty-naïve formulation, which limits the
number of the components that are involved in the system performance prediction,
by applying a cut-off threshold to the correlation coefficients between the compo-
nents and system states. A higher resolution of this thrifty-naïve formulation is also
obtained by considering local performance indicators, such as the flow at each sink.
This approach is successfully applied to a realistic water supply network of 49
nodes and 71 pipes. Finally the potential of this coupled simulation-Bayesian
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approach as a decision support system is demonstrated, through probability
updating given the observation of local evidences after an event has occurred.

1 Introduction

Damage to infrastructure systems reduces their functionality, hindering emergency
response as well as normal operations. While vital societal functions (housing,
education, production, etc.) are mostly carried out within buildings, or primary
systems, these cannot work properly without support from infrastructure, or sec-
ondary, systems, which allow movement of goods, services and people (Mieler
et al. 2013, 2015).

Research into risk and resilience of infrastructure systems spans across the
modeling of the multiple hazards that can hit them, the vulnerability of their
components to each or multiple hazards (Gehl and D’Ayala 2015), the systemic
consequences of components damage, eventually including cascading effects. The
scope of the studies varies from simple risk assessment, the evaluation of the impact
of a hazard, to more complex resilience analysis, considering recovery of perfor-
mance over time, possibly including conventional aging and multiple shocks
(Kumar and Gardoni 2014a; Kumar et al. 2015). Moreover, the time horizon is not
the only varying factor. Most studies either consider the impact of a future
occurrence of a hazard, i.e. they try to forecast for the purpose of planning miti-
gation and risk-reduction measures (Kumar and Gardoni 2014b), or they perform
back-analyses considering past occurrences of hazards to calibrate models (e.g.
Cimellaro et al. 2014; Kajitani and Tatano 2009).

Considerably less effort has been put into studying the much more challenging
problem of dealing with the hazard in real-time, while it occurs or in the immediate
aftermath. The main and most consequential difference between this condition and
the previous ones is that information and thus uncertainty is continuously changing
and, thus, estimates must be continuously updated in order to support informed
decision-making. In this context Bayesian Networks (BNs) have emerged as the
tool of choice to provide possible solutions. Bensi et al. (2014) have recently
provided a framework, for the seismic hazard case, that integrates BNs with
influence diagrams and decision theory. Without entering into the realm of
decision-making, this chapter explores some of the challenges that seem to delay
adoption of BN for dealing with infrastructure problems of realistic size and
complexity. In particular, two such challenges are related to: (a) the computational
effort associated with realistically sized networks and (b) the difficulty of describing
networked system behavior with physical flow-related performance metrics rather
than with simple connectivity ones, in the context of BNs.

While computational effort is a major concern in all types of applications and
especially in one that aspires to be performed in real-time, like Bayesian inference
in the framework of decision-support systems, the second aspect, i.e. the capability
of handling flow-based performance measures is one of conceptual nature. It is
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important to state clearly the difference between maximum flow (max-flow) con-
sidered in Operations Research theory and the actual physically-driven flows
considered herein. Consideration of the latter is paramount in the analysis of
infrastructure systems (in particular lifelines), in which tolerance on amount and
quality of service to end-users for maintaining serviceability is generally quite low.
For instance, most electric appliances do not work if they receive power (i.e. they
are connected to some source even in the damaged network) at a voltage lower than
about 90–95% of their working range. This results in connectivity-based methods to
be unsuitable for the analysis of such systems. Relying on connectivity or com-
puting flows can give a different picture of the actual network performance (Hong
et al. 2015). Further, and very relevant to Bayesian inference applications, physical
flows can be measured locally and represent excellent evidence, while loss of
connectivity or interruption of a source-sink path requires analysis of the network
and knowledge of the state of all involved components.

The above two aspects have thus been investigated with reference to two dif-
ferent approaches to systems modeling:

• A number of Minimum Link Set (MLS) formulations of increasing efficiency
presented in Bensi et al. (2013), particularly effective but apparently confined to
the treatment of connectivity-only problems, and denoted as Option 1 in the
following;

• An alternative approximate simulation-based approach, proposed herein and
denoted in the following as Option 2, to derive the BN structure and the con-
ditional probability tables (CPTs) from an off-line simulation, implemented
using a recently developed open-source infrastructure systems simulation plat-
form (Franchin and Cavalieri n.d., see Sect. 4.2).

2 BN Model of Seismic Hazard

While this chapter focuses on challenges associated with BN modeling of infras-
tructure systems, a complete BN model including the portion describing the dis-
tributed seismic hazard impacting the system was considered, in order to carry out
numerical applications.

The distributed seismic hazard model by Bensi et al. (2011) was adopted and
used to compare Options 1 and 2. Within such model, sketched in Fig. 1a, an event
is described in terms of magnitude and epicenter, while local intensity at each site of
interest is modeled by means of a ground motion prediction equation (GMPE), with
total variability around the log-mean split between the intra-event and the
inter-event model error terms. No amplification is considered and thus the intensity
of motion at the surface coincides with the bedrock one.

This model differs from the hazard model included in the simulation platform
used to inform BN building according to Option 2 (see below in Sect. 4). The latter
is the one developed within the EU-funded collaborative research project
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SYNER-G (2012), and described in Weatherill et al. (2014). Within such model an
event is also generated in terms of magnitude and epicenter (see Fig. 1b), and a
GMPE is used to model local intensity, on rock/stiff-soil conditions, but the
intensity measure (IM) is predicted at the points of a regular grid that covers the
entire study region, thus obtaining a shake field. This IM, incorporating the spatial
correlation between intra-event residuals at grid points, is then interpolated at each
vulnerable component’s site from the four closest grid points. The IM values at
bedrock are then amplified to obtain surface intensities at the sites of interest. Since
the platform is conceived to handle multiple interconnected infrastructural systems
and components usually have different fragility models, taking as input different
IMs, a number of secondary IMs at each site can be finally predicted through a
within-site cross-IM correlation model.

In sum, the differences between the implemented seismic hazard BN model
(based on Bensi et al. 2011) and the SYNER-G one included in the simulation
platform are that in the former (i) no IM interpolation occurs, (ii) no bedrock-surface
amplification occurs, and (iii) only one IM is considered. In practice, these differ-
ences have been removed by carrying out the simulations used to inform BN
building in Option 2 switching off bedrock-surface amplification, and using a
seismic grid size of just 500 m, so that the computed IM at the generic site of interest
practically coincides with the IMs at the four closest points (in turn, very similar to
each other).

For the sake of illustration, Fig. 2 shows the BN portion related to the distributed
seismic hazard according to the implemented model, with reference to a trivial
five-component system (see Sect. 3, Fig. 5). The log-mean of the intensity for the
i-th vulnerable component, Si, is retrieved through the adopted GMPE from mag-
nitude M, epicenter location Epi, and source-to-site distance Ri. Correlations
between intra-event residuals εi are approximated with a Dunnett-Sobel class of
Gaussian random variables, U and Vi (Dunnett and Sobel 1955). The logarithm of
the intensity, Si, is obtained as a function of Si, εi and the inter-event residual η,

(a) (b)

Fig. 1 Sketch of the seismic hazard model: a in Bensi et al. 2011, b developed in SYNER-G
(2012)
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which is common to all sites. Finally, the C nodes in Fig. 2 represent the damage
state of the five components in the system, as a (fragility) function of seismic
intensity.

The graphical representation is done with a custom modification of the Bayes
Net Toolbox for MATLAB (Murphy 2001), which is used throughout this work to
create a BN starting from a given directed acyclic graph (dag) and to perform
inference.

3 MLS-Based Approach

Expressing the system performance from all possible combinations of component
states constitutes the main computational bottleneck of the BN framework. The
most intuitive strategy consists in building a converging BN structure that links all
components to a single system node: however, this naïve formulation leads to an
exponential increase of the CPT size, which makes inference unfeasible for real-life
systems. Therefore Bensi et al. (2013) have introduced BN formulations based on
minimum link sets (MLSs), or minimum cut sets (MCSs), in order to decompose a
given system into parallel of series sub-systems, or a series of parallel sub-systems.
This decomposition enables the application of parallel and series Boolean rules,
which can be sequentially assembled into a chain structure instead of the naïve
converging structure.

The first step of the MLS-based approach consists in the identification of the
MLSs or MCSs of a given system. In the present study, the MLS formulation has
been adopted in the applications, while the use of MCSs follows the same prin-
ciples. A recursive algorithm for finding all the minimal link sets (MLSs) of a
system has been implemented and is summarized in Fig. 3. Currently, only edges
(representing for instance pipes in water supply systems) can be considered as

Fig. 2 BN model of
distributed seismic hazard,
applied to a five-component
example system
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vulnerable components. However, the extension of the algorithm to vulnerable
nodes is straightforward.

The construction of the BN structure for different levels of the MLS formulation
is demonstrated through a trivial water supply system (see Fig. 4). One source is
supposed to service two sinks through a system of five vulnerable pipes that are
assumed to be undirected. The system metric that is chosen here is the connectivity
between the source and sink #1 (i.e. nodes a and d). Four MLSs are identified
between a and d thanks to the recursive algorithm: {2–4}, {1–5}, {1–3–4} and
{2–3–5}.

For comparison purposes, the naïve formulation for this straightforward example
is presented in Fig. 5: with five binary components, the CPT for the system node
already contains 25+1 elements.

Thanks to the identification of the MLSs, intermediate nodes representing the
MLSs can be introduced, as shown in Fig. 6. Fewer component nodes are now
contributing to the converging structure of each MLS. However, in the case of
larger systems where numerous components might be included in some MLSs, this
BN structure would also end up to be limited by the size of CPTs.

Fig. 3 Flow chart of the MLS-search algorithm

Fig. 4 Five-component
example system: only the
edges are considered to be
vulnerable
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Therefore a second level of the MLS formulation is defined by adopting a chain
structure to assemble the MLSs. This efficient MLS formulation uses survival path
events (SPEs), which are referred to as “ES” nodes in the graphs (see Fig. 7). When
assembled in chain, they are able to represent each MLS as a survival path sequence.
Each SPE is the child of a component node and/or one or more SPE node(s): at each
stage of the survival path sequence, it is used to check whether the sequence is still
surviving when an additional component is included. While the efficient MLS for-
mulation is useful to reduce the number of parents and the size of CPTs, it tends to
generate a large number of SPE nodes when a given component is contributing to a
large amount of MLSs: for each participation of a component to a MLS, a new
instance of SPE has to be created, thus resulting in ten SPE nodes for five compo-
nents in the example system.

Therefore a more advanced level of the MLS formulation has been proposed by
Bensi et al. (2013), where the SPE chains are coalesced across the different MLSs.
The construction of the coalesced BN structure is based on the following steps:

• Assume that the number of instances of each SPE cannot exceed a given value
Ni (e.g. start with Ni = 1).

• Optimize the connectivity structure between the SPE nodes from all possible
permutations. The objective is to obtain a solution with the lowest number of
edges.

• The solution must satisfy two constraints: (a) each MLS must be represented by
a survival path sequence and (b) each survival path sequence that is defined by
the connectivity matrix must correspond to a MLS.

Fig. 5 Naïve formulation for
the example system (only
system shown, no hazard)

Fig. 6 MLS formulation for
the example system
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• If no adequate solution is found, the optimization procedure is repeated with a
higher number of SPEs instances (i.e. Ni → Ni + 1).

Bensi et al. (2013) have also proposed two additional heuristics in order to
reduce the space of the optimization problem. The first one consists in the creation
of super-components, which are groups of components that can be assembled in
series or in parallel depending on their respective contributions to the MLSs. The
second heuristic identifies groups of components that contribute to several MLSs in
order to lock their permutation order, thus reducing the size of the optimization
space.

This optimization algorithm with the two heuristics has been implemented and
applied to the example system. The efficient MLS formulation with coalesced
survival path sequences is presented in Fig. 8, where only six SPEs are used (i.e.
two SPE instances are required to represent component “C3”).

Fig. 7 Efficient MLS
formulation with survival path
sequences, for the example
system

Fig. 8 Efficient MLS
formulation with coalesced
SPEs, for the example system
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While the coalesced SPE chains help to drastically reduce the number of nodes
in the BN structure, it should be noted that the size of optimization problem
increases exponentially with the number and sizes of MLSs. As a result, a signif-
icant computation time is spent on the optimization process before the BN inference
is performed.

The various modeling approaches are compared in Table 1, with respect to the
considered example system.

3.1 Compression Algorithm

As an alternative to the MLS-based formulation, Tien and Der Kiureghian (2015)
have introduced a compression algorithm that is applied to the system CPT when
the naïve formulation is used. The authors take advantage of the repeating structure
of the CPT to jointly apply two compression methods:

• Algorithm 1: representation of the data by consecutive bits of the same value
(i.e. runs).

• Algorithm 2: for mixed values that cannot be efficiently compressed for algo-
rithm 1, a Lempel-Ziv algorithm (Ziv and Lempel 1977) based on the encoding
of recurring phrases is applied.

In the example provided by Tien and Der Kiureghian (2015), only system and
component nodes are considered, without the hazard assessment part. Conse-
quently, these variables belong to a single clique and the variable elimination
algorithm is used to perform the inference. This enables to sequentially update the
compressed CPT when a variable is eliminated. The authors have shown that the
memory storage space only increases linearly with the compression algorithm,
whereas the computation time due to the compression operations has an expo-
nential rate with respect to the number of components. Tien and Der Kiureghian
(2015) have partially solved the computational time issue through a careful ordering
of the component variables within the system CPT and by taking advantage of
single-component MLSs.

However, the compression algorithm has only been demonstrated for a trivial
BN structure where the hazard assessment has been left out: in the case of more
generic systems, such as the ones presented in this study, the variable elimination
algorithm may not be used anymore and the ordering of the variables becomes less

Table 1 Size and complexity of the various BN structures for the example system

Formulation # of nodes # of edges Max. CPT size

Naïve 6 5 64
MLS 10 14 32
Efficient MLS 16 20 32
Efficient MLS (coalesced) 7 14 16
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transparent. Moreover, seismic intensity nodes have to be added to the clique
containing the system nodes, which may complicate the structure of the table of
potentials and dramatically reduce the efficiency of the compression algorithm. It is
also unclear how sum and product operations can be performed on the compressed
matrices without requiring preliminary decompression/recompression operations.
Therefore the compression algorithm approach has not been considered in the
following benchmark, pending further investigation of the aforementioned issues.

3.2 Application to a Water Supply Network

The most efficient MLS approach, based on the coalescence of SPE chains, was
tested with reference to a small academic example network, taken from Kang and
Lee (2015). The network is a water supply system (WSS) composed of seven
nodes, two of which are water sources and one is a sink or demand node (see
Fig. 9). The eleven edges (pipes) are the only vulnerable components. The only
seismic source, whose activity parameters are indicated in Fig. 9, is discretized into
12 epicenter locations (that will be the 12 possible states of the “Epi” node in the

Fig. 9 Water supply network
taken from Kang and Lee
(2015)

394 F. Cavalieri et al.



BN). For this system, two connectivity problems can be defined, dealing with the
existence of at least one path between each of the two sources and the only sink.

The optimization procedure has been applied to the water supply network in
order to build the efficient MLS formulation with coalesced SPEs, as shown in
Fig. 10. The “SCi” nodes represent the super-components that are created by the
first heuristic proposed by Bensi et al. (2013): series super-components identify
groups of components that always appear together in the MLSs, while parallel
super-components identify components that appear in different MLSs while sharing
these MLSs with the same set of other components. This step enables a drastic
reduction of the total number of nodes in the BN, i.e. from 206 nodes with the
efficient MLS formulation to 108 nodes with the coalesced version.

Two algorithms are applied to the BN model, i.e. Junction-Tree (JT) for exact
inference and Likelihood Weighting (LW) for an approximate solution (with 105 or
2 × 105 samples). The posterior distribution of two variables, i.e. earthquake
magnitude and intensity measure at component #4, given the disconnection of one
of the source-sink paths, is presented in Fig. 11. The global shape of the updated
distributions is satisfyingly captured by the approximate inference, however local
differences around the distribution tails may prove to be unacceptable, especially in
the context of infrastructure risk where low-probability high-impact events are

Fig. 10 BN model for the example system (efficient MLS formulation with coalesced SPEs)
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crucial. Moreover, doubling the number of samples in LW does not seem to greatly
reduce the error rate. Therefore the use of exact inference algorithms such as JT
appears to be the only viable option, even though sampling algorithms are able to
cope with larger and more complex BNs.

As expected, the results that are provided by the two different MLS formulations
(i.e. coalesced or not) are absolutely identical. In terms of inference performance,
however, the efficiency of the two BN models is compared in Table 2. As stated
above, the coalesced formulation leads to a dramatic reduction in the number of
SPE nodes. However, even when the optimization time is excluded, the JT infer-
ence time is actually significantly greater than for the non-coalesced MLS version.
This surprising observation is due to the fact that, while reducing the number of
nodes, the coalesced formulation creates highly connected and interdependent
chains of SPEs. As a result, the cliques that are generated during the initialization of
the JT algorithm are almost ten times larger with the coalesced version. The impact
of the clique size on the JT inference is essential: this is confirmed by the inference
times that are obtained with the LW algorithm, which just propagates probabilistic
outcomes through all the BN nodes without building up cliques. Therefore the
application to this small water supply system has shown that the efficient MLS
formulation with coalesced SPEs is not necessarily the most suitable approach,

Fig. 11 Prior and posterior distributions for probability of magnitude (left) and IM = PGA (right);
posterior are computed by JT and LW

Table 2 Performance measures of the different MLS formulations

Statistics Efficient MLS Efficient MLS (coalesced)

# of SPE nodes 132 34
Maximum clique size 24,576,000 196,608,000
Inference time (JT) (s) 11.5 57.7
Inference time (LW – 105) (s) 315.1 161.2
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since the complexity of BN is more determined by the clique size than the number
of nodes or edges.

This section has detailed and reviewed various modeling approaches to solve
BNs for larger systems. Their application to small examples has revealed several
pending issues and computational bottlenecks, which are summarized as follows
(see Table 3):

• When exact algorithms such as JT are applied, the main issue is the size of the
cliques that are assembled. They depend on the CPT size of the nodes (i.e.
number of parents and discrete states), but also on the more global connectivity
of the “vicinity” of the nodes, which is much more difficult to apprehend and
quantify.

• The MLS formulation requires the preliminary identification of MLSs, which
can be a non-trivial and time consuming task for larger systems (i.e. recursive
algorithm).

• The aggregation of SPE chains does not guarantee the reduction of the com-
plexity of the BN. Moreover, the initial optimization step to build up the coa-
lesced SPE chains can lead to significant computation times, especially if
numerous SPE instances are required.

• The compression algorithm proposed by Tien and Der Kiureghian (2015) is also
based on the identification of MLSs in order to sequentially construct the system
CPT, while the compression operations end up converting memory storage
space into high computation time.

As shown in Table 3, there is no straightforward modeling option that can solve
all types of systems. Each approach presents some computational bottlenecks, since
it appears that solving one issue (e.g. CPT or clique size) usually comes at the
expense of time-consuming preliminary steps (e.g. MLS search or optimization of
SPEs). Therefore, unfortunately, the recent advances in BN modeling for infras-
tructure risk assessment do not offer all the tools that are necessary to tackle larger
systems. Moreover, the systems that have been used for this demonstration are
based on binary component states with connectivity-based performance metrics. Far
greater challenges are raised when capacity or serviceability metrics are considered,
since the use of connectivity-based MLSs or MCSs is not relevant anymore.

Table 3 Qualitative description of the main criticalities that are involved in the various BN
modeling options

Formulation MLS search SPE optimization Compression Inference
(clique size)

Naïve X
Efficient MLS X X
Efficient MLS (coalesced) X X X
Naïve with compression X X
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4 Simulation-Based Approach

4.1 The Thrifty Naïve (t-Naïve) Formulation

The proposed approach makes use of raw component and system performance data,
obtained from a system simulation of nr runs, to develop the structure of the BN
portion related to system performance (i.e., the “lower” BN portion including only
components and performance metrics nodes, C and P) and to estimate the CPTs of
the performance nodes P by simple counting. The CPTs of the remaining nodes
(associated to the nc components as well as the hazard-related random variables) are
derived analytically, as in the MLS-based approach. Off-line simulation results are
provided in the form of a nr × (nc + nP) state matrix, containing, for each simu-
lation run, the state indicator for each of the nc components plus the values of the nP
performance metrics.

Doguc and Ramirez-Marquez (2009) were apparently the first to propose such a
use of system-component data pairs to support automated BN building. They
focused on one advantage of such a BN setup, which is the fact that the resulting
BN, unlike expert-driven ones, can be easily and continuously updated to follow
changes in system configuration as well as the availability of new data. They came
up with an algorithm that has polynomial complexity [O(n2)], it is quadratic in the
number of nodes, which is very attractive in terms of containment of the compu-
tational effort increase with the network size, but has also the undesirable feature of
being dependent on component ordering. The method proposed herein retains the
same quadratic complexity but is independent of component ordering.

Beside inference of the BN structure from system-components data pairs, the
simulation-based approach has another important upside which is the most valued
one with respect to the objective of the presented work and the reason to propose it:
there are no limitations on the type of performance metrics that can be handled, thus
connectivity-based measures can be considered as with the MLS-based formulation,
but no extra conceptual or practical effort is required to work with flow-based ones.

The starting point is the simplest system description, with all the nc component
nodes C directly linked to each and every system performance node P: this is referred
to hereafter as first variant of the naïve formulation, in which results from a system
simulation can be used only to train the CPTs of P nodes. These CPTs size increases
exponentially with the network size, the total number of entries being mn+1 where
m is the common number of possible states for C and P nodes, and n is the number of
components (2n+1 being the case of binary systems of binary components), and more
generally ∏mi over the C nodes and the system performance node of interest.

The proposed approach starts from the naïve BN structure and reduces the
number of edges by eliminating those corresponding to a low component-system
correlation, as measured by ρmin. For this reason it is named thrifty naïve formu-
lation (again, first variant, meaning direct link between C and P nodes). Once the
BN structure is obtained, CPTs of P nodes are computed by counting. It is worth
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noting that only edges are removed from the BN, while all the component nodes are
retained and can be object of Bayesian inference.

The resulting BN structure depends on the choice of the correlation thresholds
ρmin (one for each P node) below which edges are removed from the BN. In the
examples to follow (see Sects. 4.2 and 4.3), the threshold values were chosen in
order to “significantly” reduce the number of edges and the choice is judged by
comparing its performance to the MLS-based formulations, for cases where they
can be contrasted; a thorough sensitivity study of the final results to ρmin, and the
consequent search for an optimal number of links that are retained for each per-
formance metric, are left to future work.

The effectiveness of the proposed method relies on the extent to which the
influence of each component is related to the performance of interest. In every
system the importance of components will in general vary and some will be more
relevant than others, think for instance to graph articulation points or bridges,
whose loss can collapse the graph into disconnected portions. More specifically,
however, the maximum gain would be obtained when only a limited number of
components is related to a given performance, possibly on a geographical basis, a
criterion of physical proximity. Based on this idea an improved version of the
thrifty naïve formulation can be obtained by including intermediate nodes I between
the C and P nodes, corresponding to simpler local performance metrics, for instance
the percent demand satisfaction at a given sink node, rather than on the entire
network. In this second variant the off-line simulation results are used to compute
correlations between C nodes and I nodes, as well as between I nodes and P nodes.
Similarly to the first variant, only the BN edges linking nodes with correlation
higher than the selected correlation thresholds are retained, while the remaining
ones are deleted from the BN. Obviously, selecting very low thresholds yields the
second variant of the naïve formulation, with all BN edges retained. Once the BN
structure is obtained, the CPTs of I and P nodes are computed by counting. With
reference to the performance metrics considered in this work (see next Section),
which are based on quantities computed at sink nodes, the number of such inter-
mediate nodes per metric equals the number of sinks.

4.2 The Object-Oriented Platform for Infrastructure
Systems Modeling and Simulation (OOFIMS)

A software platform for quantitative probabilistic seismic risk analysis, namely
Object-Oriented Framework for Infrastructure Modeling and Simulation (OOFIMS),
has been recently developed (Franchin and Cavalieri n.d., 2013) within SYNER-G
(2012), as a computational tool to assess the vulnerability to earthquakes of an urban
area including buildings, lifelines and critical facilities. The tool, coded inMATLAB®

(The MathWorks 2011) language according to the object-oriented paradigm (OOP),
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allows to model and analyze the performance of interconnected/interdependent
infrastructure systems and sets of buildings, at the urban/regional scale, in ordinary or
“disturbed” conditions (e.g., due to the impact of a natural or man-made hazard). It
was conceived from the beginning as an open framework and is currently being
extended to include multiple natural hazards, e.g. flood hazard (Cavalieri et al. 2015),
and community resilience assessment (Franchin and Cavalieri 2015).

The features of the proposed simulation-based approach will be shown in the
next sections with reference to WSS case studies. The functional model for this
network, as implemented in OOFIMS, consists of the N + E steady-state nonlinear
flow equations (Houghtalen et al. 2009):

AT
Dq−Q hDð Þ= 0

R qj jq+ ADhD +AShSð Þ= 0

�
ð1Þ

where N and E are the number of internal (non-source) nodes and of edges,
respectively. The first N equations express flow balance at the internal nodes (sum
of incoming and outgoing flows equals zero), while the next E equations express
the flow resistance of the edges. The subscripts D and S denote the partitions (of
vectors and matrices) referred to the N internal or demand nodes and M source
nodes, respectively. The matrices AD (E × N) and AS (E × M) are sub-matrices of
the E × (N + M) matrix A, containing 0, 1 and −1 terms as a function of the
network connectivity. The vectors hD (N × 1) and hS (M × 1) are the corre-
sponding partitions of the (N + M) × 1 vector h collecting the N unknown water
heads in the internal nodes and the M known water heads in the source nodes. The
E × 1 vector q collects the unknown flows in the E edges, and R is the E ×
E diagonal matrix of resistances, with terms ri = ui ⋅ Li, where ui = β ⋅ D−5

(according to Darcy’s law) and Li is the i-th edge length. The above set of equations
expresses the flow analysis in “head-driven” mode, since the flows actually
delivered, Q(hD), are reduced with respect to the end-user demands, Q, if the
(unknown) heads at internal nodes fall below thresholds hmin; the latter are usually
set as the average building heights in the areas served by the nodes, incremented by
five meters water column. For the generic internal node this is written as:

Qi hD, ið Þ= Qi ⋅ hD, i
hi,min

, if hD, i < hi,min
Qi, if hD, i ≥ hi,min

�
ð2Þ

This approach is preferred to the solution with fixed demands (“demand-driven”
mode), especially for the perturbed seismic conditions, where satisfaction of pre-
scribed demands is not guaranteed (it’s an assessment rather than a design
problem).

Concerning the physical damageability of vulnerable components, i.e. the edges
or pipes, the latter were assigned only two states (intact/broken) and lognormal

400 F. Cavalieri et al.



fragility curves, in place of Poisson repair rates,1 in order to make the two
approaches (MLS-based and t-Naïve) comparable.

Among the numerous performance metrics implemented in OOFIMS, two
system-level metrics for WSS are of interest in this work.

The first metric is the Connectivity Loss (CL), introduced by Poljanšek et al.
(2012). This connectivity-based index measures the average reduction in the ability
of sinks to receive flow from sources. The same metric is also often called Simple
Connectivity Loss (SCL), in order to distinguish it from the Weighted Connectivity
Loss (WCL), in which the number of sources connected to the sinks is weighted,
e.g. in terms of sum of the inverse of (free-flow) travel times on the paths between
sinks and sources: for this reason, hereafter the acronym SCL is employed:

SCL=1−
1
nd

∑nd
i=1

Ni, d

Ni, 0
ð3Þ

where nd is the total number of sinks or demand nodes, while Ni,d and Ni,0 are the
number of sources connected to the i-th sink, for the damaged and intact network,
respectively. It should be noted that this metric cannot be measured but must be
evaluated through a system analysis. This makes collecting evidence in terms of SCL
for Bayesian updating problematic. This problem, however, is not related to SCL
only, but to connectivity measures in general, which require looking at the entire
network in order to establish whether paths exist in the damaged configuration.

As opposed to SCL, the System Serviceability Index (SSI) is a flow-based and
“measurable” system-level performance metric, defined by Vanzi (1995) for electric
power networks. With reference to water supply systems, the metric takes the form:

SSI = 100
∑n

i=1 Qi hD, ið Þ
∑n

i=1 Qi
ð4Þ

where Qi(hD,i) and Qi have been defined above and are referred to the damaged and
undamaged conditions, respectively. The SSI index varies between 0 and 100,
assuming the value 0 when there is no solution for the flow analysis and 100 when
the WSS remains undamaged after the earthquake, or the water head at all sink
nodes is larger than the threshold. The metric is measurable and does not require a
system analysis (of course it does in an analytical simulation framework, but it does
not need one in an actual physical network). It does require only knowledge of the
Q values at sink nodes, which can be obtained locally without knowledge of
conditions at other parts of the network.

The number of connected sources N and the flow Q are the quantities used to
define the intermediate nodes in the improved t-Naïve formulation illustrated in the
previous section.

1In OOFIMS line-like components such as pipes, embankments, etc. have Poisson vulnerability
models with rate of failure per km as a parameter, which is used to establish rupture or leakage of
each segment.
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4.3 Kang and Lee Water Supply System by the t-Naïve
Formulation

In order to compare it to Option 1, the proposed simulation-based approach is first
applied to the Kang and Lee (2015) example network. In order to allow the
computation of the two system-level performance metrics introduced above, SCL
and SSI, the network was modified with the addition of one source and one sink, as
shown in Fig. 12.

Vulnerable components (pipelines) have two states: intact (1 in the matrix) and
broken (2 in the matrix). A Monte Carlo simulation of nr = 10,000 runs was carried
out, which provided a state matrix of 10,000 rows by 13 columns (nc = 11 plus nP
= 2). Table 4 shows an excerpt of such state matrix as provided by OOFIMS, with
four further columns, added for use in the second variant of the proposed approach,
reporting the number of connected sources N and the ratio between delivered flow
and end-user demand Q(hD)/Q, for each of the two sinks in the example and each
simulation run. The highlighted rows, in the last six columns, expose the inade-
quacy of purely connectivity metrics. In fact, even though both sinks are connected
to all sources (SCL = 0), the head losses in the network, due to earthquake-induced
damage, cause heads at sinks to fall below thresholds, thus preventing end-user
demands to be fully delivered (SSI < 100%). This underlines the need to carry out

Fig. 12 Water supply
network taken from Kang and
Lee (2015), with one source
and one sink added
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flow analysis, which includes connectivity, for all lifelines (e.g., power and gas
networks), in order to get an estimate of the actual serviceability at end-user nodes.

The BN model with distributed hazard and the first variant (i.e. without inter-
mediate nodes I) of the naïve formulation for the system part is shown in Fig. 13.
As can be seen, all the nc = 11 components are linked to both P nodes, representing
SCL and SSI, respectively. The latter are continuous variables, and for this example
were discretized into ten states. As a consequence, the size of their CPTs results to
be 10 × 211 = 20480: this is a really large number, considering the size of this
small example network.

Figure 14 presents a sketch of the correlation-based procedure to switch from the
naïve to the thrifty naïve formulation. For each P node, nc = 11 correlation coef-
ficients are computed and then, based on the two selected thresholds (for SCL and
SSI), only four edges between C and each P node are retained. This is graphically
represented in the figure by means of shades of grey, where lighter color means
higher correlation (white is one, black is zero), and only components 1, 2, 7 and 9
are retained for metric P1 = SCL, and components 4, 7, 9 and 11 for metric P2 =
SSI (components 7 and 9 belong to both sets, and their importance is confirmed
once one recognizes that they are direct links between Source 3 and 2, respectively,
and Sink 2). Figure 15 shows the resulting reduced BN, in which the CPTs of both
P nodes have size equal to 10 × 24 = 160.

As explained above, in the second variant of the thrifty naïve formulation the
simulation results are used to compute correlation between the component nodes
and the intermediate nodes, as well as between the latter and the performance

Table 4 Excerpt of the state matrix provided by OOFIMS

States (1 = intact, 2 = broken) of the eleven components # conn. sources Q/Q0

Run C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 SCL (%) SSI (%) Sink1 Sink2 Sink1 (%) Sink2 (%)
1 1 1 1 1 1 1 1 2 1 2 1 0 100 3 3 100 100
2 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
3 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
4 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
5 1 1 1 2 1 1 1 1 1 1 1 0 11 3 3 9 13
6 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
7 2 1 1 2 1 1 1 1 1 1 1 0 8 3 3 3 12
8 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
9 1 2 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
10 1 1 1 1 1 1 1 1 1 2 1 0 100 3 3 100 100
11 1 1 1 1 1 1 2 1 1 1 1 0 41 3 3 75 19
12 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
13 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
14 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
15 1 1 1 1 1 1 1 1 1 2 1 0 100 3 3 100 100
16 2 1 1 1 1 1 2 1 1 1 1 0 0 3 3 0 0
17 2 2 1 1 1 1 1 1 1 1 1 33 68 2 2 40 86
18 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
19 1 1 1 1 1 1 1 2 2 1 1 0 41 3 3 74 18
20 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
21 1 1 1 1 1 1 2 1 1 1 1 0 41 3 3 75 19
22 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
23 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
24 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
25 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
26 1 2 1 2 1 1 1 1 1 1 1 0 1 3 3 0 2
27 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
28 1 1 1 1 1 1 1 1 1 1 1 0 100 3 3 100 100
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nodes. Because the number of the I nodes equals the number of sinks for both P
nodes, in this example four intermediate nodes were introduced, as shown in
Fig. 16. Given the different nature (connectivity-/flow-based) of the two employed

Fig. 13 BN model with distributed hazard and naïve formulation (first variant)

M Epi

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

S̄1 S̄2 S̄3 S̄4 S̄5 S̄6 S̄7 S̄8 S̄9 S̄10 S̄11

U V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7 ϵ8 ϵ9 ϵ10 ϵ11 η

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
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Fig. 14 Correlation-based procedure to switch from naïve to thrifty naïve formulation (first
variant)
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Fig. 15 BN model with distributed hazard and thrifty naïve formulation (first variant): only four
links are retained for each metric

M Epi

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

S̄1 S̄2 S̄3 S̄4 S̄5 S̄6 S̄7 S̄8 S̄9 S̄10 S̄11

U V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

1 2 3 4 5 6 7 8 9 10 11 η

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

I1 .1 I2 .1 I1 .2 I2 .2

P1 P2

Two intermediate
nodes added

per P node

Fig. 16 BN model with distributed hazard and thrifty naïve formulation (second variant), with
introduction of two intermediate nodes per P node
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performance metrics, the two couples of intermediate nodes were treated differently.
In particular, for the I nodes connected to P1 (i.e., SCL) node, correlation was
computed between components’ states and the number of connected sources, for
each sink; on the other hand, for the I nodes connected to P2 (i.e., SSI) node,
correlation between components’ states and the ratio between delivered flow and
end-user demand, for each of the two sinks, was taken into account (see Table 4).
Figure 16 shows the final BN model, with some links between BN nodes already
deleted based on the selected correlation thresholds. It should be noted that, given
the small number (i.e., two) of sink nodes for this example, the thresholds were
selected in order to retain the links between intermediate nodes and their respective
P nodes, producing a naïve formulation between I and P nodes: the CPTs of P nodes
were thus derived analytically. Figure 16 gives an immediate outlook of how the
network components differently contribute to the sink states and hence to final
metrics. In particular, it can be noted that some components (#8 and #10) are not
linked to any sink node, meaning that do not play an important role in the network
performance assessment.

Figure 17 summarizes and compares the results obtained with the two approa-
ches, the efficient MLS-based and the simulation-based t-Naïve. Two intuitively
related types of evidence on performance nodes P were considered: total discon-
nection of sinks from sources (SCL = 1) and severe reduction of delivered water
flow at sinks (SSI < 20%). The performance was tested with reference to the
posterior distribution of magnitude and IM, i.e. the peak ground acceleration
(PGA): in order to investigate the dependency on edge elimination of both variants
of the t-Naïve formulation, the IM was computed at two component sites, one of
which (#7) results to be linked to intermediate or performance nodes (depending on

Fig. 17 Comparison between the different approaches and formulations
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the considered variant), while the other one (#10) is disconnected (i.e., not directly
connected) in both configurations (see Figs. 15 and 16). In Fig. 17 the prior dis-
tributions of such quantities are also reported for convenience. Since Option 1
(eMLS in the figure) can handle only connectivity problems, it was possible to test
its performance only for the case of evidence on SCL. In particular, such perfor-
mance was compared with that of Option 2, with reference to four formulations:
naïve (all links present) and thrifty naïve (some links deleted on the base of cor-
relation), both for the first and the second variant of the simulation-based approach.
The comparison is encouraging, showing a good match between Option 1 and
Option 2 posterior distributions. It can also be noted that for all three quantities
considered, the two naïve curves are superimposed, while the two thrifty naïve
curves are very close to each other: this means that there is no great gain in
employing the second variant rather than the first one, at least for this simple
example and the quantities considered here. Concerning the second evidence (SSI <
20%), the four formulations of the simulation-based approach were considered,
again showing no substantial difference between each other.

The different approaches were also compared in terms of computational effort,
using a laptop with a 2 GHz i7 quad core CPU and 8 GB RAM. The outcome is
reported in Table 5, in terms of computational times (in seconds). It has to be noted
that such times are related only to the automated set-up of the BN model and the
inference, and do not include the time for MLS search (0.6”), which is needed for
option 1, and for the OOFIMS simulation (49’ 7” for 104 samples), needed for
option 2. Table 5 highlights the great time reduction for both variants of the thrifty
naïve formulation. The second variant of the naïve formulation is clearly slower
than the first one, due to the increased number of nodes. Naïve formulation times
are higher than those of option 1, which performs well for this small example,
relative to connectivity issues. However, the MLS-based approach becomes
intractable when dealing with larger examples.

4.4 A Larger, Realistically Sized Example

In order to prove the capabilities of the proposed simulation-based approach in
handling larger, realistically sized networks, the water supply system whose

Table 5 Computational times (in seconds)

Evidence SCL = 1 SSI < 20%
Method M IM7 IM10 M IM7 IM10

eMLS (coalesced) 9.0 9.1 9.0
Naïve 1st 26.9 25.9 26.0 26.0 26.7 26.1
t-Naïve 1st 3.3 3.2 3.3 3.3 3.2 3.3
Naïve 2nd 42.8 43.1 43.1 45.3 45.1 43.8
t-Naïve 2nd 2.9 2.9 3.0 2.9 2.9 2.9
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topology is sketched in Fig. 18, together with the indication of node types (water
sources, sinks), was considered. As can be noted, the graph is characterized by a
grid or mesh-like topological structure, typical in urban areas where the main arcs
connect suburbs or districts, and can be considered as a transmission/distribution
(TD) system. The topology was generated using the network model developed by
Dueñas-Osorio (2005). Such model, already used by Franchin and Cavalieri (2015),
aims to represent real TD systems, based on the ideal class of the d-lattice-graph, an
unweighted, undirected, regular graph of dimension d with vertices joined to their
lattice neighbors according to specified rules. First, the number of vertices n is fixed
in order to obtain a square grid, since TD models exist on adjacency matrices of
square topologies. Then, m edges of the complete graph (an aperiodic TD substrate)
are retained with a probability of existence equal to pm. This probability can be
estimated empirically for each network typology, and the expression provided by
Dueñas-Osorio (2005) for water systems is:

pm =0.60 ⋅ n− 0.05 ð5Þ

The total number of nodes is 49, five of which are constant-head water sources,
25 are sinks/demand nodes and the remaining ones are joints. A total of 71 cast iron
pipes connect the nodes. Only one seismogenic area (activity parameters indicated
in Fig. 18), discretized into nine epicenter locations, is present.

Fig. 18 Topology of the
synthetic water supply system
used as a realistic case study
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Given the size of the system, the MLS-based approach results to be unfeasible
and was not applied. Further, for this example the large number of pipes, i.e.
vulnerable components that are assigned a C node in the BN model, prevents the
application of the naïve formulation, so that only the thrifty naïve formulation was
used for both variants of the simulation-based approach.

For the sake of clarity, a simplified sketch of the BN model with distributed
hazard and the first variant of the thrifty naïve formulation for the system part is
shown in Fig. 19. C nodes are linked directly to P nodes, without an intermediate
nodes layer; in particular, some C nodes are linked to one or both P nodes, while
others (e.g. C2) are left disconnected based on correlation, meaning their role in the
network performance assessment is not paramount.

Figure 20 shows a sketch of the second variant of the thrifty naïve formulation
for the considered water supply system. As can be noted, a layer is added between
C and P nodes, including one intermediate BN node for each sink node in the
system and per P node, for a total of 50 intermediate nodes. Links between C, I and
P nodes are again retained based on correlation.

Figure 21 compares the results obtained with the two variants of the thrifty naïve
formulations, in terms of the quantities (magnitude and IM, i.e., PGA) and evidence
(SCL = 1 and SSI < 20%) already introduced in Fig. 17 for the Kang and Lee
example. To investigate the dependency on edge elimination, the component sites
selected in this case for the IM computation are #63, which is linked to at least one I
or P node (depending on the considered variant), and #27, which results to be
disconnected (i.e., not directly connected) in both configurations.

Fig. 19 BN model with
distributed hazard and first
variant of the thrifty naïve
formulation
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The first variant was tested with three different numbers, that is 5, 10 and 15, of
C nodes connected to both P nodes; on the other hand, the performance of the
second variant was analyzed with reference to only one configuration, involving a
variable number (one to seven) of C nodes connected to I nodes and as low as five I
nodes linked to both P nodes. Such a small number is justified by considering that
in this case the CPTs of P nodes soon become very large, being I nodes not binary,
as are C nodes: in particular, the 25 I nodes related to P1 (i.e., SCL) have six states,
indicating the number of connected sources (0, 1, 2, 3, 4, 5), while the ones related
to P2 (i.e., SSI) were assigned five states, based on demand discretization.

Despite the very small numbers of directly connected nodes in both variants, the
comparison is again encouraging. The number of connected components does not
seem to cause important variations in the results, making the approach robust
against the threshold selection and definitely feasible to handle realistic systems.

Fig. 20 BN model for the second variant of the thrifty naïve formulation (only system shown)

Fig. 21 Thrifty naïve formulation: comparison between the first variant (with three different
numbers of component nodes linked to P nodes) and the second one (with five intermediate nodes
linked to P nodes)
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All curves show a right-shift that is more evident for the SCL = 1 evidence than for
SSI < 20%, as expected. The proximity of the different curves for all three quan-
tities in the subplots indicates that, relatively to the quantities considered here, the
choice of one variant rather than the other one is almost indifferent.

The computational times, using the same laptop indicated above, resulted to be
totally acceptable (see Table 6), especially if related to a non-academic example.
The displayed times do not include the 95’ 50” time needed to carry out the
OOFIMS simulation (104 samples). Comparing the times of the first variant of
t-Naïve formulation for the three different numbers of components, it is clear how
computational time is far from being linear with the increment of connected
components, due to exponential increase in CPT size.

The great convenience of using the second variant in place of the first one, is
given by the presence of intermediate nodes (explicitly representing the sink nodes),
in particular the ones linked to P2 node. In fact, such nodes allow the user to handle
flow quantities not only at the global/system level (i.e., for SSI computation) but
also at the local/node level.

As already pointed out in the introduction, one of the possible goals of setting up
a BN model is the possibility to deal with the hazard consequences in real-time, that
is feeding the model with evidence as soon as it appears and consequently updating
all the probability distributions of interest in the framework of decision-support
systems. In the emergency phase following a seismic event, assessing the number of
sources connected to a sink, or estimating SCL or SSI might be not feasible in a
timely manner. Typical evidence in such a scenario are local in nature, like intensity
measurements at strong-motion stations, magnitude values from P-waves, all
available in a very short time frame from seismological agencies and often online,
but also even though later, state of components as observed in the field or mea-
surements of service levels in network demand nodes. An example of this appli-
cation is shown in Fig. 22, where the posterior distribution of flow ratio at node #15
is based on the evidence of the actually delivered flow at another sink node. In order
to gain insight into the influence of the distance from the “evidenced” sink node, a
low serviceability evidence (Qi(hD,i) < 20% Qi) was put on two different nodes, one
of which (#16, the “close” one) is adjacent to node #15, while the second one
(#25, the “distant” one) is located in another sector of the network. As expected,
Fig. 22 clearly shows how the close node heavily impacts node #15, whereas the
influence of the same type of evidence put on the distant node is negligible.

Table 6 Computational times

Evidence SCL = 1 SSI < 20%
Method M IM63 IM27 M IM63 IM27

t-Naïve 1st (5) 14.2’’ 14.3’’ 14.3’’ 14.4’’ 14.4’’ 14.4’’
t-Naïve 1st (10) 26.0’’ 26.6’’ 26.4’’ 26.1’’ 26.6’’ 26.7’’
t-Naïve 1st (15) 17’13’’ 17’30’’ 17’30’’ 17’20’’ 17’22’’ 17’22’’
t-Naïve 2nd (5) 1’35’’ 1’40’’ 1’42’’ 1’35’’ 1’39’’ 1’35’’
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Another type of local evidence that can be obtained quickly (and sometimes also
easily, without digging) is represented by the breakage of a pipe. Similarly to what
was done for the evidence on the flow, the influence of the distance from the
evidenced pipe on the posterior distribution of flow ratio at node #15 was inves-
tigated, by putting the breakage evidence on a “close” pipe (#35) and a “distant”
pipe (#24). Also in this case, the outcome was expected: the close pipe heavily
impacts node #15, with a 100% probability to experience a flow ratio lower than
20%, whereas the distant node has small or negligible influence (see Fig. 23).

Fig. 22 Prior and posterior probability distributions of flow ratio at sink node #15: evidence on
actually delivered flow at sink #16 (the “close” one) and sink #25 (the “distant” one)

Fig. 23 Prior and posterior probability distributions of flow ratio at sink node #15: evidence on
failure of pipe #35 (the “close” one) and pipe #24 (the “distant” one)
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5 Conclusions and Future Work

Management of infrastructure systems damaged by an external hazard in real-time
is a daunting task that can be theoretically tackled by means of a Bayesian Network
model. Real-sized networks, however, pose a computational challenge to the use of
BNs and, further, existing efficient formulations seem to be confined to
connectivity-based models of networked systems. System performance as assessed
by connectivity-based and flow-based models can be different, and flows are also
better quantities to be used as evidence in Bayesian updating. The chapter inves-
tigates these two problems, i.e. the computational limits of available BN models for
infrastructure systems and the consideration of actual physical flows in the
infrastructure network model. Two approaches are considered. One is an efficient
and exact formulation based on Minimum Link Set modeling of the problem,
proposed by Bensi et al. (2013) and used as a benchmark, at least for connectivity
problems.

The second is an alternative simulation-based approach, proposed by the
authors, in which raw component and system performance data, coming from a
Monte Carlo simulation of the infrastructure system model, are used to develop the
structure of the BN portion related to system performance and to estimate CPTs by
counting. The initial naïve formulation is replaced by a more efficient thrifty-naïve
one, where BN nodes related to vulnerable components are all kept, while several
links between these nodes and system performance nodes are deleted on the base of
correlation. The results, comparable with efficient MLS-based ones on connectivity
problems, are encouraging. One upside of the proposed approach is the possibility
to handle flow-based problems, with the computation of actual flows as determined
by physical flow equations (in place of the commonly considered max-flow). The
second application showed that such approach allows one to handle larger and
realistic networks.

In the field of seismic risk assessment, most random variables are continuous and
in this work were discretized. Future work aims to explore the sensitivity to dis-
cretization and the possibility to handle Gaussian/conditional Gaussian variables
with the junction tree engine. Further, OOFIMS, the computational platform used to
produce the components-system data set to support the proposed approximate BN
model, can account for multi-state components (e.g. pipes can be intact, leaking or
broken): such extension of the approach is straightforward and underway.
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Bayesian Network Methods for Modeling
and Reliability Assessment
of Infrastructure Systems

Iris Tien

Abstract Infrastructure systems are essential for a functioning society. These
systems, however, are aging and subject to hazards of increasing frequency and
severity. This chapter presents novel Bayesian network (BN) methodologies to
model and assess the reliability of complex infrastructure systems. BNs are par-
ticularly well suited to the analysis of civil infrastructures, where information about
the systems is often uncertain and evolving in time. In this environment, BNs
handle information probabilistically to support engineering decision making under
uncertainty, and are capable of updating to account for new information as it
becomes available. This chapter addresses one of the major limitations of the BN
framework in analyzing infrastructure systems, namely the exponentially increasing
memory storage required as the size and complexity of the system increases.
Traditionally, this has limited the size of the systems that can be tractably modeled
as BNs. Novel compression and inference algorithms are presented to address this
memory storage challenge. These are combined with several heuristics to improve
the computational efficiency of the algorithms. Through the application of these
algorithms and heuristics to example systems, the proposed methodologies are
shown to achieve significant gains in both memory storage and computation time.
Together, these algorithms enable larger infrastructure systems to be modeled as
BNs for system reliability analysis.

1 Introduction

Infrastructure systems are essential for a functioning society, from distributing the
water we drink, to delivering the electricity we need, to enabling transport of people
and goods from source points to destination points. Our nation’s infrastructure,
however, is aging and becoming increasingly unreliable with potentially severe
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consequences. These systems are complex, comprised of many interconnected and
interdependent components, and they are subject to increasing hazards, both natural
and man-made. While the ideal solution may be to replace every component in
every system, the reality is that resources are limited. Given a complex infras-
tructure network, system reliability analyses are required to identify the critical
components and make decisions regarding inspection, repair, and replacement to
minimize the risk of system failure.

The information that we have about our infrastructure systems is often uncertain
and evolving in time. Sources of uncertainty include discrepancies between initial
design and construction, probabilistic degradation of systems, and exposure to
stochastic hazards over time. In addition, we often receive new information about
these systems, e.g., from observations, inspections, or repair actions, to incorporate
into current system assessments. Bayesian networks (BNs) are an ideal framework
to address these challenges. BNs are able to both update the network when new
information becomes available, and handle information probabilistically to support
engineering decision making under conditions of uncertainty.

2 Bayesian Networks (BNs)

A Bayesian network (BN) is a directed acyclic graph comprised of nodes and links,
as shown in the example in Fig. 1. Each node represents a random variable and
each link the probabilistic dependency between the variables (Jensen and Nielsen
2007). In constructing a BN, each node in the graph is described by a set of
mutually exclusive and collectively exhaustive states. For discrete random vari-
ables, the description of these states is straightforward. For continuous random
variables, methods have been developed to perform exact inference in continuous
linear Gaussian BNs (Lauritzen and Jensen 2001; Madsen 2012), where inference is
the process of making conclusions about uncertain quantities in the system based on
data or observations. For non-Gaussian variables, simulation methods such as
Markov-chain Monte Carlo can be used (Neal 1993). Otherwise, continuous ran-
dom variables can be discretized.

Figure 1 shows a BN model for five random variables X = X1, . . . ,X5f g.
Looking at X4, we see arrows into the node from X1 and X2. In BN terminology, X4

X5

X4X3

X2X1
Fig. 1 An example of a BN
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is called a “child” node of X1 and X2, and X1 and X2 are called the “parent” nodes of
X4. Children nodes are defined conditionally on the parent nodes. Specifically, for
discrete nodes, a conditional probability table (CPT) is attached at each node that
describes the conditional probability distribution of the node given the states of its
parents. Nodes without parents, i.e., X1 and X2, are known as root nodes, and are
defined by their marginal probability distributions. Together, the conditional and
marginal probability distributions define the joint distribution over all random
variables X in the network according to the rule

p xð Þ= ∏
n

i=1
p xijPa xið Þð Þ ð1Þ

where p xð Þ=Pr ðX1 = x1 ∩ X2 = x2 ∩⋯Þ is the joint probability mass function of
the random variables, p xjyð Þ=Pr ðX = xjY = yÞ denotes the conditional probability
mass function of random variable X given the outcome Y = y of another random
variable, and Pa xið Þ indicate the parent nodes of xi for i=1, . . . , n total nodes in the
network.

2.1 Advantages of BNs

As a probabilistic framework, the BN it is well suited for modeling and analyzing
the reliability of systems. Relationships between variables, representing component
states, are modeled probabilistically and the likelihood that a node is in a particular
state is measured in degrees of belief. This is particularly useful in an environment
where information is uncertain, including in the analysis of infrastructure systems,
where information is oftentimes scarce, incomplete, or probabilistic in nature.
Furthermore, the BN allows a transparent framework for modeling, which facili-
tates model review and verification by disciplinary experts who may not be familiar
with probabilistic methods.

In addition, the BN framework allows for updating of the probability distribu-
tions as new information, or evidence, becomes available. When evidence, e.g., the
information that a node is in a particular state, on one or more variables is entered
into the BN, the information propagates through the network to yield updated
probabilities in light of the new observations. This capability of updating is par-
ticularly advantageous when the information on which the analysis of a system is
based is evolving. In infrastructure reliability assessment, this enables decision
making based on the most up-to-date information, e.g., after an action is taken to
repair or replace a component of the system, or a particular component failure is
observed. It also enables system planning based on different scenarios, e.g., after a
natural hazard event such as an earthquake has occurred.
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2.2 Limitations of BNs

One of the major limitations of the BN framework, however, is the size and
complexity of the system that can be tractably modeled as a BN. In particular, the
CPTs associated with each node in the BN can grow enormously large when a node
has many parents, each having many states. This happens in systems with many
components. Thus, despite its advantages, BNs have been limited in their use for
system reliability analysis.

2.3 BNs for Analyzing System Reliability

Previous studies using BNs for system reliability analysis have been limited,
focusing on generating BNs from conventional system modeling methods, such as
reliability block diagrams (Torres-Toledano and Succar 1998; Kim 2011) and fault
trees (Bobbio et al. 2001). The systems studied have been small, comprised of 5, 8
(Mahadevan 2001), or 10 components. In BN studies to model the reliability of
slightly larger systems, including a system of 16 components in Boudali and Dugan
(2005), the authors state that this “large number” of components makes it “prac-
tically impossible” to solve the network without resorting to simplifying assump-
tions or approximations. It is clear that even a network of 16 components is not
enough to create a full model of many real-world systems.

Another approach has been topology optimization as proposed in Bensi et al.
(2013), which converts BNs with converging structures into chain-like BN models
based on survival or failure path sequences. This formulation minimizes clique
sizes to more efficiently model large systems as BNs. The proposed optimization
program, however, must consider the permutation of all component indices and,
therefore, may itself become intractably large for large systems.

2.4 Conditional Probability Tables (CPTs)

The limitation in the size of a system that can be tractably modeled as a BN is due
to the CPTs that must be associated with each node in the BN. The CPT defines the
conditional probability distribution of the variable represented by the node given
the states of its parents. Specifically, in the case of a discrete node, the CPT
provides the conditional probability mass function of the node, given each of the
mutually exclusive combinations of the states of its parent nodes. As an example,
for the BN given in Fig. 1, Table 1 gives the CPT of X4 given the states of its
parents X1 and X2. Here, a binary system is considered such that the nodes X1, X2,
and X4 each have two possible states, 0 or 1.
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The size of a CPT grows exponentially with the number of parents of the node in
the graph. If each node has m states, then the CPT consists of mn+1 elements, where
n is the number of parents. The CPT of the binary node X4, which has two binary
parents, consists of 23 = 8 elements as shown in Table 1. It is noted that, using total
probability, the conditional probability of a random variable Xi being in any given
state will be the complement of the sum of the conditional probabilities of the
variable being in all other states, i.e., 1− ∑m− 1

j=1 p xi = jjPa xið Þð Þ. This value can be
computed based on the other stored entries if desired. For example, in Table 1,
Pr X4 = 1jX1 = 0,X2 = 1ð Þ=1− Pr X4 = 0jX1 = 0,X2 = 1ð Þ. If this is done, then the
total number of elements that must be stored in the CPT is mn+1 −mn. As n
increases, however, this remains a computationaly intractable problem.

2.5 BN Formulation for Infrastructure Systems

In modeling infrastructure system reliability, the states of components that comprise
the system are represented as the nodes of the graph. The model includes a node
representing the system state. Because the state of the system depends on the states
of its components, the BN model is defined with the system state as a child of the
nodes representing the component states, i.e., links are directed from component
nodes to the system node, as shown in Fig. 2.

Thus, for a binary system comprised of n=100 total components, for example,
the CPT for the system node consists of 2101 = 2.5 × 1030 individual elements. This
poses a significant memory storage challenge in constructing and analyzing the BN.
The exponential increase with each additional parent node quickly renders the

Table 1 Conditional
probability table for X4 from
BN of Fig. 1

X1 X2 X4

0 1

0 0 Pr X4 = 0jX1 = 0,X2 = 0ð Þ Pr X4 = 1jX1 = 0,X2 = 0ð Þ
1 Pr X4 = 0jX1 = 0,X2 = 1ð Þ Pr X4 = 1jX1 = 0,X2 = 1ð Þ

1 0 Pr X4 = 0jX1 = 1,X2 = 0ð Þ Pr X4 = 1jX1 = 1,X2 = 0ð Þ
1 Pr X4 = 0jX1 = 0,X2 = 1ð Þ Pr X4 = 1jX1 = 1,X2 = 1ð Þ

C1 C2 Cn

sys

. . . Fig. 2 BN of a system
comprised of n components
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problem intractable. Therefore, BN modeling of systems has been limited to small
systems, typically of no more than 20 binary components. The methodologies
presented in this chapter address this problem of exponentially increasing memory
storage demand with increasing system size to enable large infrastructure systems to
be modeled as BNs for reliability assessment.

3 Compression Algorithm

Consider a binary system, where each component as well as the system are in one of
two possible states, survival or failure. Observe that the component states deter-
ministically define the system state, i.e., for any combination of the component
states, the system is in either a survival or a failure state. Such a model is partic-
ularly useful for studying the reliability of infrastructure systems, such as gas,
power, or transportation systems, where the states of individual gas pipelines,
electrical transmission lines, or roadways directly determine the state of the
infrastructure system. In this case, the CPT associated with the system node has a
special property. Let the failure and survival states of the system be defined as 0 and
1, respectively. Since for each distinct combination of component states the system
state is known with certainty, the system CPT is comprised solely of 0 s and 1 s,
with the values given in a single vector.

The novel algorithms described in this chapter first proposed in Tien and Der
Kiureghian (2013) and later developed in Tien (2014) and Tien and Der Kiureghian
(2016) take advantage of this property, specifically through a data compression
process. It is noted that while the methodologies presented focus on binary systems,
they can be extended to multi-state flow systems, e.g., where the component states
are discretized values of a flow capacity, e.g., 0, 50 and 100% of maximum
capacity. In such a system, just as the failure and survival states of individual
components determine the state of the system, the flow capacities of components
determine the flow capacity of the overall system. In both cases, for any specified
states of components states, the state of the system is deterministically known, and
the process for data compression described can be used.

Data compression is the process of reducing the number of bits required to store
a given dataset. Several methods have been developed for compressing data,
including both lossy and lossless methods. In lossy compression, nonessential
information is removed from the dataset to reduce storage requirements. The
compressed dataset is an approximation of the original dataset. In lossless com-
pression methods, redundancy in a dataset is exploited to reduce the number of bits
required to store the data without loss of any information. A dataset compressed
using lossless compression can be fully reconstructed, i.e., decompressed com-
pletely accurately. The developed compression algorithm described in this chapter
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is based on two lossless compression techniques, described briefly in the following
sections.

3.1 Run-Length Encoding

In a set of data to be compressed, a run is defined as consecutive bits of the same
value. In run-length encoding, runs are stored as a data value and count (Hauck
1986). For example, in compressing a sequence of white and black pixels,
respectively indicated by “W” and “B,” a sequence of 18 W’s is stored as the count
18 and the data value W. Thus, the memory storage requirement is reduced from 18
elements to 2. Run-length encoding is well suited for data with many consecutively
repeated values. However, mixed values are stored literally, which results in little
gain for mixed data. For example, alternating white and black pixels results in the
compressed dataset 1W1B1W1B ⋯, which in fact doubles the memory storage
requirement compared to the uncompressed form WBWB ⋯. An example of
run-length encoding is shown below:

Uncompressed dataset WWWWWWWBWWWWWBBWWWWWWWWWW
Compressed dataset 7W1B5W2B10W

In the dataset, the initial run of 7 W’s is stored as 7 W, followed by one B stored
as 1B, followed by a run of 5 W’s stored as 5 W, etc. Thus, the original dataset
comprised of 25 elements is compressed to a dataset of 10 total elements. Of course,
gains achieved by employing run-length encoding to compress a given dataset
depend on the number and length of runs in the dataset.

3.2 Lempel-Ziv

Techniques based on the classical Lempel-Ziv algorithm (Ziv and Lempel 1977)
find patterns in the data, construct a dictionary of phrases, and encode based on
repeated instances of phrases in the dictionary. While there are several techniques
developed to construct the dictionary, the major advantage of the Lempel-Ziv
algorithm lies in the ability to call the phrases in the dictionary at each repeated
instance of a phrase, while having to store just one instance of the phrase in the
dictionary. An example of the Lempel-Ziv algorithm with the corresponding dic-
tionary is shown below:
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Uncompressed dataset WWBWBBWBWWBB
Compressed dataset ∅W1B2B2W3

Dictionary:

Phrase number 1 2 3 4
Full phrase W WB WBB WBW
Encoded as ∅ W 1B 2B 2 W

In constructing the dictionary, begin with the empty set ∅. The dictionary is then
dynamically constructed as the data is processed through. In the dataset, the first bit
is W, which is encoded as the empty set ∅ plus a W. Next is another W, which has
appeared before as phrase 1, to which the bit that follows, B, is appended. Thus,
phrase 2 is created as phrase 1 (W) plus a B, which is added to the dictionary. This
process continues until arriving at the end result of the compressed dataset of
∅W1B2B2W3.

The key idea in Lempel-Ziv is to find patterns in the dataset to be compressed
and to utilize the repetitions of those patterns to achieve savings in memory storage
demand. In the example given, the relatively short length of the dataset resulted in
limited savings in the compression. However, as the size of the dataset gets larger
and the number of repeated phrases increases, the gains achieved by employing the
Lempel-Ziv algorithm to compress the dataset also increase.

3.3 Developed Compression Algorithm

The developed compression algorithm integrates both run-length encoding and
Lempel-Ziv concepts to compress the system CPT of the BN. Both techniques
result in lossless compression. Therefore, no approximations or assumptions are
made in the compression of the system CPT.

A run is defined as consecutive bits of the same value. In the binary case, bits
can take one of two values: 0 or 1 to indicate failure or survival, respectively.
A consecutive sequence of 0’s is called a “0 run,” and a consecutive sequence of 1’s
is called a “1 run.” Phrases are comprised of at least two elements, the first value
and a sequence of the differing second value. The dictionary for the proposed
algorithm is comprised of these phrases. Note that this definition of a phrase is
different from the standard Lempel-Ziv definition.

Figure 3 shows the flowchart for the developed compression algorithm for a
binary system with n components and with MCSf g denoting the set of minimum cut
sets (MCSs) of the system. The output of the compression algorithm is the com-
pressed system CPT, cCPTsys, and the accompanying dictionary of phrases, d0.
Steps of the algorithm are described below.
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For each row k=1, . . . , 2n of the system CPT, the component states s1, . . . , sn
are computed in terms of the row number based on the specific pattern used in
defining the table. The table is constructed with C1, . . . ,Cn organized from left to
right. Each row of the CPT is one of the mutually exclusive combinations of
component states. The specific pattern used to organize these states is: C1 is in state
0 for rows k=1, . . . , 2n− 1 and in state 1 for rows k=2n− 1 + 1, . . . , 2n; C2 is in
state 0 for rows k=1, . . . , 2n− 2, in state 1 for rows k=2n− 2 + 1, . . . , 2n− 1, in state
0 for rows 2n− 1 + 1, . . . , 2n− 1 + 2n− 2, and in state 1 for rows
2n− 1 + 2n− 2 + 1, . . . , 2n; etc. This pattern continues through Cn. Utilizing this
pattern in constructing the CPT, the state of component i, i=1, . . . , n, in row k of
the CPT is determined according to the rule

si =
0 if ceil k

2n− i

� �
∈ odd

1 if ceil k
2n− i

� �
∈ even

(
ð2Þ

where ceilðxÞ is the value of x rounded up to the nearest integer. For example, for a
system comprised of 20 components, the state of C15 in row 450,000 is 0 because
ceil 450000

220− 15

� �
=14063 is odd. Note that using the above rule, the data on component

states in the CPT is easily removed without any loss of information.

Compression Algorithm 

decision input/output processing step

flow of control information link

update length 
of 1 run in CPT

update length 
of 0 run in CPT

run or phrase?
phrase

run

0 or 1?

1

0

new or existing phrase?

new

existing

update number 
of instances of 
phrase in CPT

add phrase to 
dictionary

compressed CPT

start 

end

dictionary

MCS{ }

determine 
system statecompute si

Input: 
Output:

for                   , do k ←1 to 2n

n, MCS{ }
cCPTsys, d0

Fig. 3 Flowchart of compression algorithm
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For each row, the component states are checked against MCSf g to determine the
system state. If all of the components comprising at least one MCS have failed, then
the system is in the fail state; if not all components in any of the MCSs have failed,
then system is in the survival state. This value of the system state is then encoded in
compressed form as a run or a phrase. Runs can be 0 runs or 1 runs, and as the
number of consecutive repeated values increases, the length of the run is increased.
When a phrase is encountered, the phrase is checked against the contents of the
dictionary to determine if the phrase is an existing one that has already been stored
in the dictionary, or if it is a new one that must be added to the dictionary. Each
phrase in the dictionary is fully defined by four variables: (1) the phrase number,
p, (2) the first value in the phrase, v1, (3) the second and subsequent values in the
phrase, v2, and (4) the length of the phrase Lp. Once the existing or new phrase has
been identified, the number of repeated instances of the particular phrase, denoted
np, is updated.

Each row of the compressed CPT is comprised of three values: (1) an indicator
variable that defines whether the row is the beginning of a run or a phrase; (2) if a
run, the value r of the run; if a phrase, the phrase number p in the dictionary; and
(3) if a run, the length Lr of the run; if a phrase, the number np of repeated instances
of the phrase. Therefore, a run is defined by the values run, r, Lrf g and a set of
phrases is defined by the values phrase, p, np

� �
. Once all rows of the system CPT

have been processed, the end result of the compression algorithm is the compressed
CPT, cCPTsys, and the dictionary, d0. The size of this data is typically orders of
magnitude smaller than the size of the original CPT (Tien and Der Kiureghian
2013).

3.4 Application to an Example System

To illustrate the developed compression algorithm, it is applied to the example
system shown in Fig. 4, which is adopted from Bensi et al. (2013). The system
consists of a parallel subsystem C1,C2,C3ð Þ and series subsystems C4,C5,C6ð Þ and
C7,C8ð Þ. For this system, the set of MCSs is MCSf g= f C1,C2,C3,C4ð Þ,
C1,C2,C3,C5ð ÞðC1,C2,C3,C6Þ, C7ð Þ, C8ð Þg.
The BN formulation of the system is shown in Fig. 5. The full system CPT is

shown in Table 2. The first 8 columns give the states of components C1, . . . ,C8,

C1

C2

C3

C4 C5 C6

C7 C8source sink 

Fig. 4 Example system
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constructed according to the pattern described in Sect. 3.3. The right-most column
gives the state of the system given the states of the components in that row. Because
the system is comprised of 8 components, the system CPT consists of 28 = 256
rows.

3.4.1 Construction of Compressed CPT

The implementation of the proposed compression algorithm proceeds by processing
through the rows k=1, . . . , 2n. Note that we only need to compress the vector of
system states, i.e., the right-most column in the CPT. There is no need to compress
the entire CPT as the component states in any row, i.e., the values in columns
1, . . . , n, can be determined according to the rule given in Eq. (2).

In row k=1, s1, . . . , s8f g= 0, . . . , 0f g. As all components in the system are in
the failed state, clearly the system is also in the failed state. More rigorously,
checking against MCSf g, we see that all components in the first MCS,
C1,C2,C3,C4ð Þ, have failed. Therefore, sys=0. Note that once we find that all
components in a MCS are in the failed state, we need not check the component
states against the remaining MCSs as the failure of any one MCS indicates failure
of the system.

As we continue through the rows k=2, . . . , 31, we find the system to be in the
failed state, until we reach row k=32. Therefore, the compressed CPT begins with
a 0 run of length 31. At k=32, s1, . . . , s8f g= 0, 0, 0, 1, 1, 1, 1, 1f g. Checking
against MCSf g, we see that none of the MCSs have failed. In fact, the path from

C1 C2 C8

sys

. . . Fig. 5 BN formulation of the
example system

Table 2 System CPT for
example system

C1 … C7 C8 sys

0 … 0 0 0
0 … 0 1 0
0 … 1 0 0
0 … 1 1 0
⋮ ⋮ ⋮ ⋮
1 … 0 0 0
1 … 0 1 0
1 … 1 0 0
1 … 1 1 1
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source to sink flows through C4,C5,C6,C7,C8. Thus, sys=1, and we have reached
the end of the initial 0 run. Looking at k=33, s1, . . . , s8f g= 0, 0, 1, 0, 0, 0, 0, 0f g.
We see that the component in the fourth MCS C7ð Þ has failed. Therefore, sys=0
and we have a phrase beginning at row k=32. Had the value in row k=33 been
sys=1, we would have had a 1 run.

At this point, we have not yet encountered any phrases and our dictionary is
empty. Therefore, this is the beginning of a new phrase. For k=34 and k=35,
sys=0. At k=36, sys=1, indicating the end of the phrase. The full phrase,
therefore, is 1, 0, 0, 0f g for k=32, . . . , 35, which is stored in the dictionary as
1, 1, 0, 4f g. These four values indicate that the phrase number is p=1, the first

value in the phrase is v1 = 1, the second and subsequent values in the phrase are
v2 = 0, and the length of the phrase is Lp =4. Note that in the binary case, v1 and v2
are complements, so knowing one value enables us to know the other. However,
while it is not necessary to store both values in the initial construction of the
compressed system CPT, in the subsequent process for inference, v1 and v2 can take
values different from 0 and 1 and are no longer guaranteed to be complements.
Therefore, during inference, we must store both v1 and v2, and all four values to
define the phrase are recorded in this stage as well for consistency.

After determining sys=1 for k=36, we continue for k=37, . . . , 39 with the
system state sys=0 and for k=40 with the system state sys=1, thus we again
encounter the phrase sys= 1, 0, 0, 0f g. This is now an existing phrase that we call
from the dictionary. Therefore, in the compressed system CPT, we reference phrase
p=1 and increase the number of instances of this phrase by 1. We continue through
the remaining rows k=40, . . . , 2n =256. Once we have processed all the rows of
the system CPT, the end result for the compressed CPT and the dictionary are as
given in Tables 3 and 4, respectively.

Tables 3 and 4 indicate that the total number of elements to be stored for the
compressed system CPT is 9 and for the dictionary is 4 for a total of 13 elements.
This is not counting the table headings, which are included for reference here and
need not be stored when implementing the compression algorithm in a computer.

Table 3 Compressed system
CPT for example system

Run or phrase r or p Lr or np
Run 0 31
Phrase 1 56
Run 1 1

Table 4 Dictionary for
example system

p v1 v2 Lp
1 1 0 4
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Note that we can check that the total number of rows represented in the compressed
CPT corresponds with the total number of rows of the system full CPT. From
Tables 3 and 4 for the example system, we start with a run of length 31, have 56
instances of a phrase of length 4, and end with a run of length 1. This equals
31+ 56× 4+1=256 rows of the original CPT that are now stored in the com-
pressed CPT. Thus, all the information in the original CPT is stored in the com-
pressed CPT and the compression is lossless. The total number of elements that
must be stored during the construction of the BN has been reduced from 28 = 256
total elements in the original CPT to 13 in the compressed CPT. In a system with a
large number of components, the amount of data reduction can be even more
dramatic than that observed for this small example system.

4 Inference Algorithm

Once the Bayesian network (BN) model of a system has been constructed, inference
is required to draw conclusions about the system. There are both exact and
approximate methods for inference. Approximate methods are generally sampling
based, including importance sampling (Salmeron 2000; Yuan and Druzdzel 2006)
and Markov chain Monte Carlo (Gilks et al. 1996; Beck and Au 2002) methods. In
theory, these methods converge to the exact solution for a sufficiently large number
of samples. In practice, however, the rate of convergence is unknown and can be
slow (Straub 2009). This is especially true when simulating events that are a priori
unlikely. The number of simulations required to achieve a sufficiently large sample
for convergence can become prohibitive. In addition, many engineering applica-
tions of BN methods for system reliability analysis require near-real time updating,
e.g., for post-hazard system assessment and decision support. For these applica-
tions, approximate methods that are computationally intensive are not appropriate.
Therefore, exact methods of inference are preferred and are considered here. In the
following sections, the two major algorithms used for exact inference, variable
elimination (VE) and junction tree (JT), are briefly described.

4.1 Variable Elimination (VE)

In the VE algorithm (Dechter 1999), our objective is to perform inference on the
“query” node, the node for which the updated probability distribution is of interest.
To do this, we eliminate all the other nodes in the network, one by one, until we are
left with the query node—hence the name of the algorithm, variable elimination.
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Elimination of each node corresponds to summing of the joint distribution over all
states of the node to be eliminated, resulting in an intermediate factor λ that is used
during the next step of elimination. For example, for the system shown in Fig. 2
with components C1 to Cn, suppose we are interested in the updated distribution of
the state of component C1, given a particular state sys of the system. The VE
calculation for this query is

p C1, sysð Þ= ∑
C2

⋯∑
Cn

p C1ð Þp C2ð Þ⋯p Cn− 1ð Þp Cnð ÞCPTsys

= p C1ð Þ∑
C2

p C2ð Þ⋯ ∑
Cn− 1

p Cn− 1ð Þ∑
Cn

p Cnð ÞCPTsys

= p C1ð Þ∑
C2

p C2ð Þ⋯ ∑
Cn− 1

p Cn− 1ð Þλn

. . .

= p C1ð Þλ2

ð3Þ

where CPTsys is the conditional probability table for the system node in the BN and
λi is the intermediate factor, in the form of a table, created after the elimination of
node Ci. Nodes C2, . . . ,Cn have been eliminated to arrive at the query node, C1. It
is noted that the order in which the variables in a network are eliminated results in
different memory storage and computation time requirements for the VE algorithm.
The selection of an optimal elimination ordering, however, is an NP-hard problem.
Depending on the structure of the network, heuristics can be developed to improve
efficiency in elimination ordering. This topic is addressed in Sect. 6.

4.2 Junction Tree (JT)

The JT algorithm (Spiegelhalter et al. 1993) breaks down the network into smaller
structures, called “cliques,” which are subsets of the nodes in the BN. The condi-
tional probability tables associated with each clique are called “potentials,” and the
JT is initialized by computing the potentials over all cliques. The advantage of the
JT algorithm comes from breaking down the full BN into cliques. For a network
structured as shown in Fig. 2 with components C1 to Cn, however, the JT is
comprised of only one clique of size n+1. As the size of the system increases,
computation of the potential over this clique during the initialization of the JT
increases exponentially and becomes intractable. Therefore, the VE algorithm is
adopted here, together with the compression of data, for inference.
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4.3 Developed Inference Algorithm

In the proposed inference algorithm, we eliminate variables one by one to arrive at
the query node, with the intermediate factor λi created after the elimination of
component Ci. The key to being able to perform inference on the BN constructed
using the compression algorithm described in Sect. 3 is that the λi’s are also
compressed using the same compression algorithm as for CPTsys. Further, the
inference algorithm is developed to handle both the compressed CPTsys and λi
without decompressing or recompressing.

Let CPTsys denote the conventional uncompressed full system CPT, and cCPTsys
the compressed system CPT constructed by running the compression algorithm.
Similarly, λi represents the uncompressed intermediate factor after elimination of
the i th component, with i = 0, n, . . . , 1 being the order of elimination, and cλi the
corresponding compressed intermediate factor. i=0 indicates that no components
have been eliminated. Therefore, λ0 =CPTsys and cλ0 = cCPTsys. Let mi indicate the
number of rows in cλi. During the compression of CPTsys, an accompanying dic-
tionary d0 is constructed, which defines the phrases present in cCPTsys.

For the developed inference algorithm, we begin with cCPTsys and d0. We then
eliminate the components in the order n, . . . , 1. At each step, we directly construct,
row by row, cλi from cλi+1 (cλn from cλ0 = cCPTsysÞ, and di from di+1 (dn from
d0Þ. Similar to the rows of the compressed system CPT, each row j of cλi,
j=1, . . . ,mi, is comprised of three values: (1) an indicator variable that defines
whether the row is the beginning of a run or a phrase; (2) if a run, the value r ji of the
run; if a phrase, the phrase number p j

i in the dictionary; and (3) if a run, the length
L j
ri of the run; if a phrase, the number n j

pi of repeated instances of the phrase. Each
row of di defines a phrase, which is fully defined by four variables: (1) the phrase
number p, (2) the first value in the phrase, v1, (3) the second and subsequent values
in the phrase, v2, and (4) the length of the phrase Lp.

The inference algorithm is given below. Let pf
� �

denote the vector of length n
defining the failure probabilities of components C1, . . . ,Cn so that pf , i =PrðCi =0Þ
is its ith element. If the component nodes have parents, the parent nodes are
eliminated first so that the component failure probabilities are marginalized. We
define two quantities: S j

i the run or phrase start row number in λi defined by row j of
cλi, and Rj the remainder after processing row j of cλi (defined in Table 5). Because
the remainder is reset after the elimination of node i, it does not carry subscript i.
Also, let Q define the set of query nodes (or components) and E denote the set of
nodes (components) for which evidence is entered.
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Tables 5 and 6 show the rules for different cases to construct cλi and di,
respectively. In both tables, the cases are shown in the left three columns. In
Table 5 for cλi, the fourth and fifth columns list the run or phrase values, and the
last column is an update of the remainder for row j. The case for a run with
S j
i+1 ∈ even involves the remainder from the preceding row of cλi. The last column

of the table lists the remainder value for the jth row of cλi. This is updated for
possible use for the next row of cλi or di. In Table 6 for di, the last three columns
list the first and second values of the new phrase and its length. When S j

i+1 ∈ even,
the first phrase value involves the remainder corresponding to the preceding row of
cλi.

With the rules described in Tables 5 and 6, the developed inference algorithm is
thus able to handle both CPTsys and λi in compressed form without decompressing
or recompressing. This enables the savings in memory storage requirement
achieved from implementing the compression algorithm during construction of the
BN to be preserved through the process of inference.

4.4 Example System

To illustrate the proposed inference algorithm, we apply it to the example system
shown in Fig. 4. We define the prior probabilities of failure as 0.2 for the parallel
components and 0.01 for the series components, such that pf

� �
= 0.2, 0.2, 0.2,f

0.01, 0.01, 0.01, 0.01, 0.01g for components C1, . . . ,C8.

Bayesian Network Methods for Modeling … 433



T
ab

le
6

U
pd

at
in
g
d i

fo
r
a
ne
w

ph
ra
se

st
ar
tin

g
in

ro
w

j
of

cλ
i

Sw
itc
h

vj 1 i
vj 2 i

L
j p i

Ph
ra
se

S
j i+

1
∈
od

d
L
j p i
+
1
∈
od

d
vj 1 i

+
1
×
Pr
ðC

i
=
0Þ

h
i +

vj 2 i
+
1
×
Pr
ðC

i
=
1Þ

h
i

vj 2 i
+
1

L
j i+

1
−
3

�
� ̸2

�
� +

1

L
j p i
+
1
∈
ev
en

vj 1 i
+
1
×
Pr
ðC

i
=
0Þ

h
i +

vj 2 i
+
1
×
Pr
ðC

i
=
1Þ

h
i

vj 2 i
+
1

L
j i+

1
−
2

�
� ̸2

�
� +

1

S
j i+

1
∈
ev
en

L
j p i
+
1
∈
od

d
R
j−

1
+

vj 1 i
+
1
×
Pr
ðC

i
=
1Þ

h
i

vj 2 i
+
1

L
j i+

1
−
1

�
� ̸2

�
� +

1

L
j p i
+
1
∈
ev
en

R
j−

1
+

vj 1 i
+
1
×
Pr
ðC

i
=
1Þ

h
i

vj 2 i
+
1

L
j i+

1
−
2

�
� ̸2

�
� +

1

434 I. Tien



4.4.1 Results of Implementing Inference Algorithm

We begin with the compressed system CPT cCPTsys given in Table 3 and the
accompanying initial dictionary d0 given in Table 4. Suppose we are interested in
the backward inference problem of obtaining the posterior probability distribution
of C1 given the observation that the system has failed. Our elimination order is
8, . . . , 1. In the first step of the elimination process, we are eliminating C8. For
reference, the uncompressed intermediate factor λ8 created after this elimination is
shown in Table 7.

For the proposed inference algorithm, however, we need not work with matrices
in uncompressed form. We will be constructing cλ8 directly from cCPTsys as
follows. cCPTsys consists of 3 rows; therefore, msys =3. Looking at row j=1 of
cCPTsys, we see that it is a run; we are starting in row 1, so S1sys ∈ odd; and the

length of the run is 31, so L1rsys ∈ odd. Therefore, in constructing cλ18, we use the

rules in the first row of Table 4.1: r18 = r1sys =0, L1r8 = L1sys − 1
� 	

̸2= ð31− 1Þ ̸2= 15,

and we have a remainder R1 = r1sys × Pr C8 = 0ð Þ=0.
Moving to row j=2, we have a phrase that starts in row 32 with a phrase length

of 4. Therefore, we use the last row of Table 5 to construct cλ28: p
2
8 = p2sys =1,

n2p8 = n2psys =56, and we have a remainder R2 = v22sys × Pr C8 = 0ð Þ=0. Because we
are now dealing with phrases, we also need to update our dictionary d8 with this
new phrase starting in row j=2 of cλ8. Given the even starting row number and
even phrase length, we are again using the last row, now in Table 6, to update

d8: v218 =R1 + v21sys × PrðC8 = 1Þ
h i

=0+ 1× 0.99½ �=0.99, v228 = v22sys =0 and L2p8 =

L2sys − 2
� 	

̸2
h i

+1= 2.

Here, we see that the run values r and the values of the phrases v1 and v2 can
take on values other than 0 or 1, even in the binary case, as we multiply by
component failure probabilities that are different from 0 or 1. However, the inter-
mediate factors λi can still be compressed because the calculations for each row
only involve the failure probability of one component so that the number of values

Table 7 Uncompressed
intermediate factor λ8
constructed after elimination
of C8 in the example system

C1 … C6 C7 λ8

0 … 0 0 0
0 … 0 1 0
0 … 1 0 0
0 … 1 1 0
⋮ ⋮ ⋮ ⋮
1 … 0 0 0
1 … 0 1 0.99
1 … 1 0 0

1 … 1 1 0.99
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that the runs and phrases can take on is still finite. Continuing with the example
system for row j=3 results in the constructed cλ8 and d8 shown in Tables 8 and 9,
respectively.

We continue the elimination process until we have eliminated the variables
C2, . . . ,C8 and arrive at the query node of interest C1. Our original inference
question was to obtain the posterior probability distribution of C1 given an
observation of system failure. From the VE process, we obtain the joint probability
p C1, sysð Þ, which we divide by pðsysÞ to arrive at the final result:
p C1jsys=0ð Þ= ½0.20930.7907� for C1 being in the failure or survival state,
respectively. Thus, given the observation that the system has failed, the probability
of failure for C1 has been updated from a prior failure probability of 0.2 to a
posterior failure probability of 0.2093.

Comparing the uncompressed intermediate factor λ8 given in Table 7 with the
compressed cλ8 and accompanying dictionary d8 given in Tables 8 and 9,
respectively, we see that the memory storage requirements have been reduced from
27 = 128 elements to a total of 13 elements, 9 for cλ8 and 4 for d8. Checking the
total number of rows represented in cλ8 with the total number of rows of the full λ8
shows the compression to be lossless, and it is again emphasized that there is no
need to decompress cCPTsys or any of the λi values to compute cλi for the inference
algorithm. Similar reductions in memory storage are achieved at each step of the
elimination process.

5 Performance of Algorithms

To evaluate the performance of the developed algorithms, we apply them to two test
example systems, comparing the performance of the new algorithms to existing
methods in terms of both memory storage and computation time.

Table 8 Compressed
intermediate factor cλ8
constructed after elimination
of C8 in the example system

Run or phrase r or p Lr or np
Run 0 15
Phrase 1 56
Run 0.99 1

Table 9 Dictionary d8
constructed after elimination
of C8 in the example system

p v1 v2 Lp
1 0.99 0 2
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5.1 Test Example Systems

We begin with the example system adopted from Bensi et al. (2013) shown in
Fig. 4. The system is comprised of 8 components and consists of a parallel sub-
system, C1,C2,C3f g, and two series subsystems, C4,C5,C6f g and C7,C8f g.
Because the objective is to see how the proposed algorithms scale, we increase the
number of components in the first two subsystems to a total number of components
in the system n. The systems obtained by increasing the number of components in
the series and parallel subsystems are shown in Figs. 6 and 7, respectively. The BN
formulation of these expanded systems is as shown for the general system in Fig. 2.

The resulting analyses of these two expanded systems demonstrates how the
proposed algorithms perform compared to existing algorithms for systems of
increasing size. While the above systems can be more efficiently represented as a
system of three supercomponents, each supercomponent representing a series or
parallel subsystem, as described in Pages and Gondran (1986) and used in Der
Kiureghian and Song (2008), here we disregard this advantage in order to inves-
tigate the system size effect. Supercomponents are discussed in Sect. 6.3.

5.2 Memory Storage

Figure 8 shows the performance of the new algorithms compared to existing
methods in terms of memory storage. The maximum number of values that must be
stored in memory during the running of the algorithms, plotted on a logarithmic
scale, is used as a proxy for the memory storage requirements of each algorithm.

C1

C2

C3

C6 … Cn

C4 C5source sink 

Fig. 6 Example test system:
expanded with increased
number of components in
series subsystem

C1

…

Cn-5 

Cn-4 Cn-3 Cn-2 

Cn-1 Cnsource sink 

Fig. 7 Example test system:
expanded with increased
number of components in
parallel subsystem
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Algorithms are run in Matlab v7.10 on a 32 Gb RAM computer with 2.2 GHz Intel
Core i7 processor.

In Fig. 8, the values for the “New” proposed algorithm are the maximum from
the initial construction of the BN (including elements in both the compressed
system CPT and accompanying phrase dictionary) and during the inference process
(including elements in both the intermediate factors λi and accompanying phrase
dictionaries at each elimination step). The values for the “Existing” algorithm
indicate the maximum number of elements stored using the existing junction tree
(JT) algorithm, as implemented in the Bayes Net Toolbox by Murphy (2001). The
“X” mark indicates the maximum size of the system after which the existing
algorithm can no longer be used because the memory demand exceeds the available
memory storage capacity.

Figure 8 shows that the proposed new algorithm achieves significant gains in
memory storage demand compared to existing methods. For the existing JT algo-
rithm, the memory storage demand, as measured by the maximum number of values
that must be stored, increases exponentially with the number of components in the
system. In fact, the algorithm runs out of memory for a system comprised of more
than 24 components. The memory storage demand using the proposed new algo-
rithm not only does not increase exponentially, but remains constant, even as the
number of components in the system increases. The total number of values stored is
15, compared to 2n+1 for the size of the full system CPT.

Fig. 8 Memory storage requirements for proposed new algorithm compared to existing method as
a function of system size
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5.3 Computation Time

Figure 9 examines computational efficiency of the algorithms, and shows the
computation times required to run the new compared to existing algorithms as a
function of increasing system size (increasing the number of components in the
series subsystem). Computation times are broken into the various functions for each
algorithm. For each system size, from left to right: “New—compression” indicates
the time required to compress the system CPT using the proposed compression
algorithm; then the time required to perform forward inference on the system given
fC1 = 0g and the time to perform backward inference on the component C1 given
fsys=0g, respectively, using the proposed inference algorithm; “Existing—ini-
tialization” indicates the times required to initialize the BN using the existing JT
algorithm; then the times required to perform forward inference and backward
inference using JT. Results for increasing the number of components in the parallel
subsystem were similar.

Figure 10 compares the computation times for the proposed algorithm for the
two systems in Figs. 6 and 7 broken down into times to: compress the system CPT,
perform forward inference on the system given the state of component C1, and
perform backward inference on component C1 given the state of the system. The
solid bars are for the case where the size of the system is increased by increasing the
number of components in the series subsystem, and the bars with diagonal hatching
are for the case where the size of the system is increased by increasing the number
of components in the parallel subsystem.
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Fig. 9 Computation times for new algorithm compared to existing method as a function of system
size
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In Fig. 10, we see that the algorithm performs slightly better in the initial
compression of the system CPT and in both inference scenarios for the systems with
an increased number of parallel components compared to series components. The
algorithm, therefore, is better suited to systems that can be formulated as few MCSs
comprised of many components each, compared to systems formulated as many
MCSs of few components each. In the latter case, it is preferable to use an MLS
formulation of the system.

Looking at Figs. 8 and 9 together, we see the classic storage space-computation
time trade-off as described in Dechter (1999). Figure 8 shows the significant gains
in memory storage demand achieved by the proposed new algorithm compared to
the existing JT algorithm; while in Fig. 9, we see that the new algorithm requires
longer computation times than the existing algorithm. We note, however, that as
systems become larger, i.e., for systems comprised of more than 20 components,
the time to perform inference for both the new and existing algorithms is expo-
nentially increasing with the system size. For the existing algorithm, this is due to
the increasing clique size for the JT. For the new algorithm, the increase in com-
putation time is due to the computations needed for compressing the CPTs and
performing inference with compressed intermediate factors λi during the variable
elimination process.

It is important to note that the natures of the memory and time constraints are
fundamentally different. Memory storage is a hard constraint. If the maximum size
of a CPT exceeds the storage capacity of a program or machine, no analysis can be
performed. While it is true that memory can be distributed, e.g., in cloud storage,
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there still exists a hard limit on the maximum. In contrast, computation time is more
flexible. Indeed, various recourses are available to address the computational time,
such as parallel computing. Thus, some system reliability problems that simply
could not be solved using existing algorithms because of limited computer memory
now can be solved using the proposed algorithms. Even so, the accompanying
increase in computation time can sometimes be prohibitive, particularly when
considering the scale of real-world infrastructure systems. The following sections
describe methods developed to improve the computational efficiency of the pro-
posed algorithms such that the algorithms achieve gains along both memory storage
and computation time measures.

6 Heuristic Augmentations

Three heuristic augmentations to the proposed algorithms are presented in this
section. The first two utilize the ordering of the components for both the com-
pression and inference algorithms, while the third addresses the BN formulation of
the system to improve computational efficiency.

6.1 Heuristic for Compression Algorithm

To compress the full system CPT, the compression algorithm must run through
each of the 2n distinct combinations of component states (rows of the CPT). This
leads to an exponentially increasing computation time for compressing the system
CPT. However, knowledge about the structure of the system can be used to reduce
the number of rows to be analyzed. For example, if component Ci on its own
constitutes a MCS, i.e., failure of Ci leads to system failure, we need not check the
states of other components when Ci is in the failed state.

In general, as discussed in Sect. 4, determining the optimal ordering of nodes in
a BN is an NP-hard problem. The heuristic employed here is to order the MCSs by
size, and order the components such that those in the smallest MCSs are numbered
first and appear to the left in the CPT. Knowing where these components appear in
the CPT enables us to know which rows in the CPT need not be processed when
running the compression algorithm. In general, given the states of the components
s1, . . . , sn for a system of n components, the corresponding row number r of the
CPT is determined according to the rule

r=1+ ∑
n

i=1
si × 2n− i ð4Þ

Thus, given a particular ordering of components comprising an MCS of a known
size, we can easily determine the rows where the system is in the failed state.
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For example, if component C1 constitutes an MCS on its own, we know that for
rows 1, . . . , 2n− 1 the system is in the failed state. If, instead, components C1 and C2

constitute a MCS, then we know that for rows 1, . . . , 2n− 2 the system is in the
failed state. We call these “0 intervals,” i.e., intervals of rows in the system column
of the CPT that are in the 0 state. For this heuristic, if a row number in the CPT is
determined to be within a 0 interval, we know that in that interval, we are in a 0 run
and we are able to directly move to updating the length of the 0 run in the CPT.
Therefore, the full compression algorithm need only process through the rows
between the 0 intervals. This reduces the number of rows that are processed and
results in reduced time spent on compression.

Figure 11 shows the result of applying this heuristic to the example systems
presented in Sect. 5.1. The dashed and solid bars show the computation times
required to compress the system CPT without and with the heuristic, respectively.
In the example systems, the two components comprising the second series sub-
system each on their own comprise a MCS. Therefore, these components are
numbered first and appear to the left in the CPT. Specifically, for the system in
Fig. 6, components C4 and C5 are renumbered 1 and 2, and for the system in Fig. 7,
components Cn− 1 and Cn are renumbered components 1 and 2.

In Fig. 11, we see the reduction in computation times achieved by employing the
heuristic for the compression algorithm. In addition, comparing the results for
systems with increasing number of components in the series versus parallel sub-
systems, we see that, consistent with the results in Fig. 10, the algorithm performs
better for the latter case. Thus, the algorithm is better suited to systems formulated
as few MCSs of many components each, compared to systems formulated as many
MCSs of few components each.
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6.2 Heuristic for Inference Algorithm

Similar to the heuristic for the compression algorithm, the heuristic for the inference
algorithm looks to ordering the components in a particular way to improve com-
putational efficiency. During variable elimination, when we arrive at the query
node, it is necessary to move it to the very left end of the CPT. This requires
reordering of the elements in the intermediate factor λi, which is a computationally
demanding effort. The heuristic employed here is to order the components such that
query components appear as far to the left in the CPT as possible. This minimizes
the number of operations that must be performed to reorder λi.

Figure 12 shows the result of applying this heuristic to the example systems
presented in Sect. 5.1. The computation times for forward and backward inference
in systems with an increasing number of components in the series and parallel
subsystems are plotted. Figure 12a, b c respectively show the results from using the
existing JT algorithm and the proposed new algorithm without and with the
heuristic employed. The C1 labeled in the figures on which inference is performed
refers to the component numbered C1 in Figs. 6 and 7. When implementing the
heuristics, the compression algorithm heuristic results in the two components in the
second series subsystem being renumbered as C1 and C2. Therefore, in imple-
menting the inference algorithm heuristic, the query node is ordered next as C3 in
the reordered formulation of the system.

Comparing Fig. 12a, b, we see that the new algorithm without the heuristic
employed requires longer computation times for inference than the existing JT
algorithm. In addition, the computation times for both algorithms increase expo-
nentially as the system size increases. However, in Fig. 12c we see that with the
heuristic employed, the new algorithm achieves computation times that are orders
of magnitude smaller than either of the other algorithms: four orders of magnitude
faster than the new algorithm without the heuristic employed, and three orders of
magnitude faster than the existing JT algorithm.

In addition, and more importantly given the effect for large systems, the com-
putation times are linearly, not exponentially, increasing with system size. The
reason for this is that when the heuristic is employed, the computation time
becomes a function of not the full size of the λi s, which exponentially increase with
the system size, but the size of the compressed λi s, which we have seen remain
constant with increasing system size. With the memory storage savings already
demonstrated, these heuristics utilizing a more effective ordering of the components
significantly improve the computational efficiency of both the compression and
inference algorithms.
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6.3 Algorithm for Supercomponents

Finally, in the previous sections, analyses of the example systems from Sect. 5.1
were purposely performed using a naïve formulation of the system with compo-
nents each treated individually in order to test the performance of the proposed
algorithm. In practice, systems can be more efficiently represented by grouping
subsets of components into “supercomponents” (SCs) in a multi-scale modeling
approach (Der Kiureghian and Song 2008). We apply the idea of SCs to the

(a)

(b)

(c)

Fig. 12 Computation times for forward and backward inference using the existing algorithm
a and new algorithm without b and with c the heuristic implemented
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example systems described in Sect. 5.1, grouping the components in series and
parallel subsystems into single SCs. Figure 13 shows the results in terms of both
computation time (left y-axis, solid and dashed lines) and memory storage (right y-
axis, circles) for systems of increasing size. Total computation times represent both
the time for compression and the time for forward or backward inference. The
maximum number of elements that must be stored during both the compression and
inference processes are used as a proxy for the memory storage requirements of the
proposed algorithms.

In Fig. 13, we see that the total number of components in the system is now
shown up to 100 components. Looking at the magnitude of the computation time
first, the total computation time is on the order of 10−2 s for a 100-component
system. Looking at the trend in computation time as the size of the system
increases, it is notably linearly, rather than exponentially, increasing. With regards
to memory storage, we see that the maximum number of elements that must be
stored remains constant, even as the total number of components in the system
increases. Thus, significant gains have been achieved in both memory storage
demand and computational efficiency with the proposed algorithm.

Fig. 13 Computation times and memory storage requirements for proposed new algorithm with
supercomponents implemented
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7 Application: Power System

With the objective of reliability assessment of infrastructure systems in mind, the
proposed algorithms are applied to analyze the reliability of the 4-substation power
network from Ostrom (2004) shown in Fig. 14, which was also investigated by Der
Kiureghian and Song (2008). The network consists of 3 inputs and 1 output, and 59
components numbered 1–59, where the circles, slashes, and squares represent cir-
cuit breakers, switches, and transformers, respectively. Power can flow along any
black line, including between substations via the connections shown. Additionally,
for this system, the method of SCs is implemented, representing each triplet of
switch-breaker-switch as a SC, as shown in Fig. 15, where the dashed squares
represent SCs.
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7.1 Inference

Given an infrastructure system comprised of many interconnected components, as
the system shown in Fig. 14 is, system risk and reliability analyses enable the
identification of critical components to support decision making regarding
inspection, repair, and replacement. Inference is required to perform these analyses.
Figures 16 and 17 show the results of performing this forward and backward
inference, respectively, for the power system application. To facilitate comparison
across components, all components are initialized with a prior probability of failure
of 0.1.

Figure 16 gives the probability of system failure given component failure for
each of the components 1–59. The results of this forward inference support decision
making in the management of the power system to minimize the risk of system
failure. For example, knowing that probability of system failure is 100% if com-
ponents 58 or 59 fail clearly indicates the importance of these two components and
the need for regular inspection or retrofit of these components to ensure system
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performance. At a less extreme level, we see that, for example, components 46-48
are more critical than components 10–15. If failed, the updated probability of
system failure is 0.4247 compared to 0.2604.

Figure 17 gives the probability of component failure given system failure for
each of the components 1–59. The results of this backward inference support
decision making in the repair of the power system to identify what may have led to
system failure after the failure event has been observed. For example, the proba-
bility that components 58 or 59 have failed has been updated from a prior failure
probability of 0.1 to 0.3840. In contrast, components 10–15 remain at a probability
of failure of 0.1. We see that the evidence on the system state is not informative for
these components, and the updated probability of failure equals the prior failure
probability.

7.2 Performance of New Algorithms

In demonstrating the ability to perform both forward and backward inference using
the proposed algorithm, the performance of the algorithm in terms of both
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computational efficiency and memory storage requirements is examined. For the
power system shown in Fig. 14, the time required to compress the system CPT is
12.8 s. The computation times required for performing forward and backward
inference are given in Figs. 18 and 19, respectively.

From Fig. 18, the average time required to compute the probability of system
failure given component failure is 0.0212 s. In Fig. 19, we see an exponential
increase in the computation time as the component number increases. This is
explained by the reordering of the intermediate factor λi that must be performed
when arriving at a query node during the VE inference process. Therefore, the
heuristic for the inference algorithm proposed in Sect. 6.2 should be implemented
whereby queries are ordered to the left in the CPT. Doing so, computation times
will be in the lower range, e.g., for components 1–20, when performing backward
inference.

Finally, the memory storage requirements are assessed. The maximum number
of elements that must be stored to perform forward and backward inference are 707
and 1059 elements, respectively. While this may not seem particularly small, this is
in comparison to a memory storage demand of 259 = 5.8 × 1017 elements for a
system of n=59 components. Therefore, the ability to construct the BN and per-
form inference using the proposed algorithms with only 103 elements needed

Fig. 18 Computation times
for forward inference for
power system application

Fig. 19 Computation times
for backward inference for
power system application
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represents an orders of magnitude reduction in memory demand. Thus, the pro-
posed algorithms achieve significant gains in both memory storage and computation
time. Together with the heuristics, this enables large infrastructure systems to be
modeled as BNs for reliability assessment.

8 Conclusions

This study presents novel Bayesian network (BN) methodologies for modeling and
reliability assessment of infrastructure systems. The chapter proposes a compres-
sion algorithm that significantly reduces the memory storage requirements for the
BN modeling of systems. The algorithm compresses the conditional probability
table (CPT) associated with the system node in the BN as a combination of runs and
phrases. The sizes of the compressed CPT and the associated phrase dictionary are
typically orders of magnitude smaller than the size of the original CPT.

The proposed inference algorithm is able to perform both backward and forward
inference on the compressed matrices. The algorithm utilizes variable elimination to
perform exact inference, where the intermediate factors created after each elimi-
nation step are also stored in compressed form. No decompression or recompression
of these factors during the inference calculations is necessary. This enables the
savings in memory storage achieved by implementing the compression algorithm to
be preserved through the inference process.

The gains achieved by the compression algorithm in memory storage are
accompanied by a trade-off in computation time. Several heuristics, including
efficient component ordering and employing supercomponents, are presented to
improve computational efficiency. Through the application of the developed algo-
rithms and heuristics to example systems, the ability to model systems of increasing
size with orders of magnitude savings in both memory storage and computation
time is demonstrated. Together, these algorithms enable larger systems to be
modeled as BNs for system reliability analysis.

Infrastructure systems are complex. In an environment of limited resources,
system reliability analysis is essential to identify the critical components of a system
to make decisions to inspect, repair, or replace. The BN-based algorithms described
in this study enable modeling of infrastructure systems at a level of detail and
complexity not previously possible. Implementation of these methodologies is a
step towards making more efficient and more effective engineering decisions about
our infrastructure systems both now and for the future.
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Kriging Interpolation Strategy
for Finite-Element-Based Surrogate
Responses of DCB Delamination Tests

Salvatore Sessa and Nunziante Valoroso

Abstract A procedure for computing the surrogate response of Finite Element mod-

els based on kriging interpolation is presented. A set of computer experiments is run

for random occurrences of a target material parameter in order to build the data

set necessary to the calibration of the interpolation model. Kriging parameters are

defined via the Matérn 5/2 variance function and via average functions related to the

expected trend of Finite Element analyses to get data consistent with the physics of

the simulated experiment. Application of the surrogate model is detailed for the case

of pure mode-I bending of a symmetric Double Cantilever Beam bonded specimen

and the effectiveness of the proposed procedure is demonstrated both in terms of

accuracy and computational effort.

1 Introduction

Gaussian regression or kriging, named after the research originally carried out by

Krige (1951), is a family of interpolation methods for scattered data in which interpo-

lated values are modeled by a Gaussian process. Its basic idea amounts to predicting

the value of a function at a given point as the weighted average of observed data with

weights being defined by means of a stochastic model related to the cross–covariance

of observations. Main appeal of kriging interpolation consists in its ability to com-

pute unknown function values quite fast regardless of the complexity of the observed

data and, at the same time, to provide the estimation of a confidence interval. The

popularity of kriging methods has rapidly grown in recent years and it has been prof-

itably applied in many different contexts involving computer experiments (Santner

et al. 2003).
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In the present chapter a kriging–based procedure is developed for obtaining the

surrogate of a Finite Element (FE) model of a bonded specimen under pure mode-

I loading to be used for identification purposes. FE-based inverse identification of

a cohesive model describing mode-I fracture in adhesive joints has been recently

investigated in Valoroso et al. (2013). The calibration procedure consists of a non-

linear programming problem in which a least-square error function expressing the

gap between measured and computed quantities is minimized.

The approach developed in Valoroso et al. (2013) has been shown to provide better

estimates of mode-I adhesive fracture energy GIc of bonded specimens compared to

data reduction schemes suggested in the test standard ISO25217 Adhesives (2009).

The latter rely upon either corrected beam theories (Blackman et al. 1991) or compli-

ance calibration methods (Berry 1960) and require as data set the values of total load

P, the end relative displacement 𝛿 and of the crack length la recorded during the test.

Inverse procedures based on FE model updating are however expensive since they

require a large number of time-consuming direct FE computations. In this context,

use of a suitably calibrated surrogate model can bring identification to a significantly

higher level of efficiency.

The surrogate model discussed in this work uses the responses of a set of FE sim-

ulations of a symmetric Double Cantilever Beam (DCB) under mode-I bending as

observed data of kriging interpolation. Specifically, a set of random points is gen-

erated in a suitable interval of the target material parameter and at each point a FE

analysis is run to get the corresponding observed response. A kriging model built

from such observations that allows to evaluate the surrogate response and the rele-

vant confidence interval has been recently carried out in Sessa and Valoroso (2015).

Herein the developments presented in Sessa and Valoroso (2015) are taken one step

further using specifically developed functions that define the average trends and

cross–correlation of the structural responses. It is worth emphasizing that the calibra-

tion of a kriging model can be computationally demanding; this is however balanced

by the negligible cost of surrogate response evaluations, that basically amount to a

set of linear, direct evaluations. When applied to experimental campaigns, where

specimen geometries and test protocols are usually fixed, the proposed procedure

results in globally improved performances compared to usual FE model updating

procedures. Actually, in such cases the surrogate model has to be generated only

once and its redundant use requires linear computations only.

Outline of the chapter is as follows. The test protocol and the FE model that are

being used for identification purposes are presented in Sect. 2. In Sect. 3 is described

the kriging interpolation procedure; calibration of the kriging model is then tackled

in Sect. 4 along with applications and numerical results that show the capabilities of

the proposed approach. Computations refer to the experimental campaign of mode–

I fracture tests carried out on bonded aluminum DCB specimens documented in

Valoroso et al. (2013), Fedele et al. (2012). Finally, Sect. 5 summarizes advantages

and limitations of the proposed approach along with future research directions.
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2 Mode-I Delamination Test Parameter Identification

Standard tests for obtaining the mode-I adhesive fracture energy GIc of bonded joints

are performed on DCB specimens whose typical geometry is sketched in Fig. 1a.

In the experimental campaign documented in Valoroso et al. (2013) experiments

were carried out following the ISO 25217 standard prescriptions. Epoxy-bonded alu-

minum specimens were tested under quasi-static loading using the electromechanical

material testing system shown in Fig. 1b and crack advancement as well as load and

end-displacement of the DCB were continuously recorded.

Rough load–deflection curves obtained from typical delamination tests are shown

in Fig. 2a, where are reported the load values P [N] recorded by the load cell against

the opening end displacement 𝛿 [mm] of the DCB.

The rough experimental curves depicted above are far from being smooth and

regular as it would be expected based on the Linear Elastic Fracture Mechan-

ics argument. A direct identification of fracture parameters via beam theories or

compliance-based methods starting from such data would therefore be quite diffi-

cult wherever possible. In the approach presented in Valoroso et al. (2013) inverse

Fig. 1 DCB delamination

test

(a) Specimen geometry

(b) Electromechanical device configuration
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Fig. 3 Load–deflection response and specimens geometry of DCB delamination tests

identification is carried out using a FE model updating scheme in which the

adhesive layer is simulated via zero-thickness interface elements and the intrinsic

cohesive zone model originally presented in Valoroso and Champaney (2006) and

Valoroso and Fedele (2010). The traction-separation profile for pure mode-I response

is sketched in Fig. 2b. The adhesive fracture parameters are computed via an opti-

mization algorithm which minimizes the error in mean–square sense between the

FE computed response and the one measured experimentally. Figure 3a compare the

results of identification carried out on the bonded DCB specimen against the rough

experimental response. Namely, the recorded load–deflection curve is plotted in blue

while the green and the red curves represent the responses computed using the FE

model sketched in Fig. 3b and the values of the adhesive fracture energy GIc com-

puted using the ISO 25217 procedures and the model updating scheme, respectively.

Identification based on model updating is recognized to be more reliable in this

case. However, its computational cost is quite high and can rapidly become pro-

hibitive even with high-performance computing facilities when the complexity of the
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model being analyzed and the number of material parameters object of the identifi-

cation increase. This motivates the interest in developing surrogate or meta-models

to replace direct FE analyses for identification purposes.

3 Kriging Interpolation

An effective approach for computing surrogate responses starting from scattered

data is based on kriging interpolation. It consists of a form of Bayesian inference

on observed data whereby the surrogate response is computed by means of weighted

average of known values with weights defined via Gaussian regression. The function

of interest is modeled as a Gaussian process defined by a prior normal distribution;

then, a set of values associated with a spatial location is observed and the covari-

ance of these evidences is computed. This defines, for each of the observations, a

Gaussian likelihood function which is combined with the prior one in order to get

an updated, posterior Gaussian process. Surrogate response provides the best linear

unbiased prediction. The recondite action of the weighted average, concealed in the

definition of the weights, consists in computing the expected value of the posterior

Gaussian process at the point of interest.

Aim of the present application of kriging interpolation is to define the surrogate

response by means of the responses usually employed in the inverse identification

of a DCB test. Specifically, it is defined in terms of a load–deflection relationship

P
(
𝛿,GIc

)
and the crack extension la

(
𝛿,GIc

)
where 𝛿 is the opening displacement

of the DCB and GIc is the Mode-I critical energy release rate.

The predicted responses are defined via the following relationships:

P⋆
(
𝛿,GIc

)
= mP (𝛿) +

n∑

𝛼=1
𝜆
P
𝛼

[
P
(
𝛿
𝛼
,GIc𝛼

)
− mP

(
𝛿
𝛼

)]

l⋆a
(
𝛿,GIc

)
= mla (𝛿) +

n∑

𝛼=1
𝜆
la
𝛼

[
la
(
𝛿
𝛼
,GIc𝛼

)
− mla

(
𝛿
𝛼

)]
(1)

where 𝛿P and 𝛿la are the response averages and 𝜆
P
𝛼

and 𝜆
la
𝛼 are the regression weights

depending on the cross–covariance of the n observations and 𝛿
𝛼

and GIc𝛼 are the val-

ues of parameters at each observation. Average functions that serve to fit the expected

trend of the responses are defined as:

mP (𝛿) = a0𝛿 + a1𝛿exp
(
−a2𝛿a3

)

mla (𝛿) = b0 + b1𝛿 + b2𝛿2 + b3𝛿3
(2)

where ai and bi with i = 1,…3 are fitting parameters; the regression weights in Eq. 1

are computed as:

𝝀
P = 𝐊−1

P 𝐤P
(
𝛿,GIc

)

𝝀
la = 𝐊−1

la
𝐤la

(
𝛿,GIc

) (3)
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Matrices 𝐊P and 𝐊la are the cross–covariances of the observed data while 𝐤P and

𝐤la contain the cross–covariance at the point
(
𝛿,GIc

)
. For both quantities, a Matérn

5/2 variance model (Santner et al. 2003) is adopted in this work.

The surrogate model is completely defined by Eqs. (1)–(3) once the kriging para-

meters are known. Fitting of such parameters is described in the following section.

4 Parameter Calibration and Numerical Application

In order to calibrate the model, a set of observed data is required. To this end, it

is necessary to choose a set of observation points in terms of the control variable

𝛿 and of the model parameter GIc. Owing to the peculiar test protocol, the opening

displacement 𝛿 has been discretized between 0 mm and 2.3 mm with step equal to 0.1

mm. Observation values of the critical energy release rateGIc are randomly generated

over a suitable domain. The observed structural responses, i.e. the load–deflection

P
(
𝛿
𝛼
,Gc𝛼

)
and the crack extension la

(
𝛿
𝛼
,Gc𝛼

)
, are therefore computed via direct

FE analyses, see also Sect. 2.

Once that the set of observations is defined, average trends are numerically com-

puted and parameters ai and bi are easily evaluated by a least–square curve fitting.

Figure 4a, b show the structural responses of eight randomly generated observations

(blue curves) in terms of load-deflection and crack extension plotted against the

opening displacement 𝛿. For any given value of 𝛿, the red curves represent the aver-

age of the numerically computed curves while the black curves provide the average

trends defined by Eq. (2) fitted to the numerical data.

In an analogous way, a curve fitting procedure allows to obtain the Matérn 5/2

covariance functions depicted in Fig. 5.

Fig. 4 Fitting of response average trends on randomly–generated occurrences
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Fig. 5 Fitting of response covariances by means of Matern 5/2 functions on randomly–generated

occurrences

Fig. 6 DCB delamination test surrogate models validation by FE–computed target responses

Once regression weights and average trends have been defined, the surrogate

model is obtained via Eq. 1. Figure 6a, b show a comparison between surrogate

responses and direct FE computations in terms of load-deflection and crack exten-

sion, respectively. The surrogate responses computed via Eq. 1 with a 24 observa-

tions data set and the responses computed for the same values of the parameters via

a direct FE analysis turn out to be undistinguishable.

4.1 Discussion

Figure 6a, b show a substantial matching of the surrogate responses with respect

to the finite–element ones. Crack length response is affected by fluctuations in the

tail regions because of the peculiar discontinuity of such response. In general, the
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Table 1 Surrogate model

computational times
Analysis Time (s)

FEM 90

Krig. 8 obs. 0.5

Krig. 16 obs. 1.75

Krig. 24 obs. 4.8

maximum error results less than 2%, i.e. of the same order of magnitude of typical

modeling errors and approximation errors affecting Finite Element analysis results.

The remarkable accuracy obtained using the kriging model is accompanied by a

significant reduction in computational cost of response evaluation, see e.g. Table 1.

In particular, for a direct forward FE analysis taking about 90 s, a kriging model with

24 observations requires less than 5 s. In this sense, the use of a kriging surrogate

model can be very effective for inverse analyses which usually requires thousands of

direct forward computations of the structural responses.

5 Conclusions

The surrogate of a FE model based on kriging interpolation has been presented. Krig-

ing interpolates observed data of a function of interest in order to predict unknowns

values of a function at an given points in the space of model parameters. In particu-

lar, the procedure discussed herein uses as observations the outcomes of forward FE

analyses run for random occurrences of a target material parameter.

For the case of mode-I fracture propagation in a bonded DCB specimen analyzed

in this work the performances in terms of computing times are noteworthy. Namely,

calibration of the kriging model required 24 complete FE analyses in the preliminary

stage. Once the meta-model has been set up, an analysis based on the surrogate model

runs 20 times faster than a direct forward FE computation. This renders the method

most effective whenever redundant computations are required, and in particular in

inverse analyses aiming to identify model parameters from experimental data.

A first possible extension of the procedure presented in this chapter concerns the

case of multi-parameter analyses. In such cases the procedure can be extended to

deal with a multi–dimensional parameter setting provided that the definition of the

cross–covariance is suitably adapted to account for possible relationships between

the model parameters. This topic is the object of ongoing research.
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Life-Cycle Analysis of Engineering
Systems: Modeling Deterioration,
Instantaneous Reliability, and Resilience

Gaofeng Jia, Armin Tabandeh and Paolo Gardoni

Abstract This chapter proposes a novel general stochastic formulation for the
Life-Cycle Analysis (LCA) of deteriorating engineering systems. The formulation
rigorously formalizes the different aspects of the life-cycle of engineering systems.
To capture the probabilistic nature of the proposed formulation, it is named
Stochastic Life-Cycle Analysis (SLCA). The life-cycle of an engineering system is
shaped by deterioration processes and repair/recovery processes, both characterized
by several sources of uncertainty. The deterioration might be due to exposure to
environmental conditions and to both routine and extreme loading. The repair and
recovery strategies are typically implemented to restore or enhance the safety and
functionality of the engineering system. In the SLCA, state-dependent stochastic
models are proposed to capture the impact of deterioration processes and
repair/recovery strategies on the engineering systems in terms of performance
measures like instantaneous reliability and resilience. The formulation integrates the
state-dependent stochastic models with the previously developed Renewal
Theory-based Life-Cycle Analysis (RTLCA) to efficiently evaluate additional
system performance measures such as availability, operation cost, and benefits. The
proposed SLCA can be used for the optimization of the initial design and mitigation
strategies of engineering systems accounting for their life-cycle performance. As an
illustration, the proposed SLCA is used to model the life-cycle of a reinforced
concrete bridge, subject to deteriorations caused by corrosion and earthquake
excitations. The deteriorated bridge column is repaired using Fiber Reinforced
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Polymer (FRP) composites. The results show that the deterioration processes sig-
nificantly affect the performance measures of the example bridge.

1 Introduction

Engineering systems are typically designed for a service life that might last for
several years. In particular, there is an increasing attention toward sustainability
(Gardoni and Murphy 2008), which calls for engineering systems to have longer
service lives. However, different deterioration mechanisms might adversely impact
the duration of the service life. Kumar and Gardoni (2014a, b) and Kumar et al.
(2009, 2015) identify two types of deterioration mechanisms that can occur in most
engineering systems: (1) gradual (progressive) deterioration (e.g., due to corrosion
(Vu and Stewart 2000; Choe et al. 2009; Zhong et al. 2010; Gardoni and Rosowsky
2011; Gardoni and Trejo 2013), Alkali-Silica reaction (Eck Olave et al. 2015a, b),
fatigue, and crack growth); and (2) shock (sudden) deterioration (e.g., due to
damages from extreme events like earthquakes, hurricanes, floods, blasts and other
natural or anthropogenic hazards) (Sanchez-Silva et al. 2011; Kumar et al. 2015).

Life-Cycle Analysis (LCA) provides a rational framework to plan and evaluate
design and mitigation strategies for engineering systems and can promote the
sustainable use of the existing resources (van Noortwijk and Frangopol 2004;
Joanni and Rackwitz 2008; van Noortwijk and van der Weide 2008; Kumar and
Gardoni 2014b; Gardoni et al. 2016). In general, during its life-cycle, a system
experiences alternating phases of being in use and of being down. The deterioration
mechanisms affect the variables that define the system (e.g., material properties,
member dimensions, and imposed boundary conditions). The state of the variables,
then define the state of the system (also called system state). The system state,
measured in terms of, for example, its instantaneous reliability, degrades over time
and when it falls below a prescribed acceptable threshold an intervention is trig-
gered. Therefore, for a complete LCA of deteriorating engineering systems, it is
critical to model and incorporate the deterioration processes, the recovery process,
and the associated uncertainties (Ellingwood and Yasuhiro 1993; Mori and
Ellingwood 1994; Ciampoli and Ellingwood 2002; Choe et al. 2009; Sanchez-Silva
et al. 2011; Kumar and Gardoni 2014b).

Resilience has been proposed as a desirable feature of engineering systems to
maximize the time they are in service providing the needed level of functionality
(e.g., Gardoni and Murphy 2008; Murphy and Gardoni 2011). Murphy and Gardoni
(2011) argued that one strategy to effectively reduce the impact of a hazard is to
improve the engineering systems’ (and more generally the society’s) resilience and
ability to respond to a disaster in a timely and well-informed way.

This chapter proposes a novel general stochastic formulation for the LCA of
deteriorating engineering systems, named Stochastic Life-Cycle Analysis (SLCA).
The key elements of the proposed SLCA include the mathematical modeling of the
deterioration and recovery processes along with a probabilistic resilience analysis.
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The proposed formulation models the service life performance of an engineering
system by integrating the models on the state-dependent deterioration (Jia and
Gardoni 2017a) and on the state-dependent recovery and resilience analysis
(Sharma et al. 2017). The SLCA integrates the deterioration and recovery models
with the Renewal Theory-based Life-cycle Analysis (RTLCA), previously pro-
posed by Kumar and Gardoni (2014b), to efficiently evaluate additional system
performance measures such as the instantaneous probability of being in service,
availability, the costs of operation and failure of the system, and the benefit for a
finite time horizon. Furthermore, this chapter evaluates the resilience of deterio-
rating systems over time, which can be used as a target attribute within the SLCA to
optimize design and mitigation strategies.

For the modeling of deterioration, we adopt the general stochastic model pro-
posed by Jia and Gardoni (2017a, b). This model predicts the system state as a
function of the values of the state variables that vary with time due to multiple
deterioration processes. Current models that consider multiple deteriorations, model
them as independent processes (Kumar et al. 2009; Sanchez-Silva et al. 2011;
Kumar and Gardoni 2014b; Kumar et al. 2015; Riascos-Ochoa and Sánchez-Silva
2015). In contrast, the model from Jia and Gardoni (2017a, b) explicitly considers
the interaction among different deterioration processes. Within this model, either
deterministic, probabilistic, or stochastic models (addressing various uncertainties)
can be incorporated to describe the changes in state variables due to the deterio-
ration processes. Once the time-varying state variables are modeled, they can be
used in existing capacity and demand models (e.g., those developed by Gardoni
et al. 2002, 2003 for reinforced concrete bridges) to predict the system state.
A capacity model gives a measure of a quantity of interest that the system can
sustain (e.g., a deformation or force that the system can accommodate or carry) and
a demand model gives a measure of the corresponding quantity of interest that the
system is asked to sustain, given the characteristics of the system and possibly other
external conditions (e.g., the deformation or force imposed by a possible seismic
load).

When the deteriorated system undergoes a recovery, the values of the state
variables may change due to the completion of different recovery activities. Also, it
is possible that the values of state variables change due to the occurrence of dis-
rupting events (i.e., shocks), that might occur before the completion of the recovery.
For the recovery modeling, we adopt the stochastic model proposed by Sharma
et al. (2017). As in the deterioration modeling, this model predicts the system state
as a function of the values of the state variables. Since the desired values of the state
variables are specified (typically in a probabilistic sense) after the completion of
each recovery activity, we can use the state variables in the appropriate probabilistic
capacity and demand models to determine the corresponding system state as in the
deterioration modeling. The impact of disrupting shocks on the state variables
during the recovery is modeled in the same way as when the system is in use (i.e., in
the deterioration modeling). We then use the estimated values of the state variables,
at any time during the recovery, in the appropriate capacity and demand models to
determine the corresponding system state.
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For the purpose of resilience analysis, we use the mathematical model in Sharma
et al. (2017). In this model, the resilience associated with a given system state and
recovery strategy (which together determine the shape of the recovery curve) is
characterized by a set of partial descriptors. Such partial descriptors have the fol-
lowing desirable properties: (1) they are simple and have clear interpretations, and
(2) any set (of partial descriptors) can be augmented with additional descriptors in a
systematic way. The first property facilitates the use of the partial descriptors in
practice and the communication of the levels of resilience to the public and
stakeholders. The second property makes the model flexible and able to characterize
resilience associated with any recovery curve with the desired accuracy (i.e., an
increasing number of partial descriptors can be used to completely define the
recovery curve).

The rest of the chapter is organized into six sections. The next section reviews
the RTLCA for the estimation of various life-cycle performance measures. Sec-
tion 3 discusses the general modeling of the system performance over its service
life, including the deterioration and recovery modeling. Section 4 presents the
estimation of the instantaneous reliability. Section 5 discusses the resilience anal-
ysis. Section 6 illustrates the proposed SLCA by modeling the life-cycle perfor-
mance of an example reinforced concrete (RC) bridge. Finally, the last section
summarizes the chapter and draws some conclusions.

2 Life-Cycle Analysis

This section discusses the RTLCA and the computation of performance measures
such as availability, the cost of operation, and benefit according to Kumar and
Gardoni (2014b).

During its service life, a deteriorating system generally experiences alternating
phases of being in use (i.e., the system is functioning) and of being down (i.e., the
system is removed from service for repairs or replacement). Figure 1 schematically
illustrates the life-cycle performance of a deteriorating system in terms of an
indicator, QðtÞ (e.g., instantaneous reliability or functionality) as a function of time
t. Within each cycle, QðtÞ degrades due to either gradual deterioration (leading to
continuous changes in QðtÞ) or shock deterioration (leading to sudden changes in
QðtÞ). When QðtÞ falls below a prescribed acceptable threshold, Qacc, an inter-
vention is triggered; hence, the system is removed from the full operation and
undergoes a recovery process with an initial residual state Qres to restore a desired
target state Qtar. We use Ii to denote the ith intervention event, being triggered at
time tIi , and Li to denote the ith renewal cycle, ending at time tLi when the system is
restored to state Qtar and a new cycle (i.e., the ði+1Þth cycle) starts.

Overall, the length of the ith cycle, TLi , corresponds to the period between the
end of the ði− 1Þth cycle and the end of the ith cycle, i.e., TLi : = tLi − tLi− 1 .
As shown in the figure, we can further divide TLi and write it as TLi = TIi + TDi ,
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where TIi is the period in which the system is in use (TIi : = tIi − tLi− 1 ), and TDi is the
down time (TDi : = tLi − tIi ).

For some systems, there might be a time delay (lag period) between the inter-
vention and the start of the recovery process. To account for the possible lag period,
we write TDi =Tli +TRi , where Tli is the lag period and TRi is the recovery time. We
use τ∈ ½0, TR� to denote the elapsed time since the beginning of the recovery.
During the lag period (e.g., from tIi to tIi +Tli ) QðtÞ may further degrade. Note that
intervention Ii in the figure is preventive because the prescribed criterion (i.e.,
QðtIiÞ≤Qacc) is met. However, intervention Ii+1 is essential because the system
experiences a full loss of performance and Qres = 0 (e.g., an ultimate failure has
occurred).

Under the assumption of the renewal theory, fTLigi∈ℕ forms a sequence of
statistically independent and identically distributed (s.i.i.d.) random variables.

A renewal event, Li, can be either LR or LF (i.e., renewal because of a repair or a
replacement due to failure), with probabilities ℙðLRÞ: =ℙðLi ≡LRÞ and
ℙðLFÞ: =ℙðLi ≡LFÞ. Using the fact that the events LR and LF are disjoint and
collectively exhaustive, we have ℙðLRÞ+ℙðLFÞ=1, and can write

fTL tð Þ= fTLjLR t LRjð Þℙ LRð Þ+ fTLjLF t LFjð Þℙ LFð Þ, ð1Þ

where fTLðtÞ is the Probability Density Function (PDF) of TLi ; fTLjLRðtjLRÞ is the
conditional PDF of TLi given that Li ≡ LR; and fTLjLF ðtjLFÞ is the conditional PDF of
TLi given that Li ≡ LF . Similarly, for TIi we have

t

Q (t)

Deterioration Recovery

in use down in use down

Qtar

Qacc

Qres

TLi
TLi+1

TIi TDi
TIi+1 TDi+1

Tli TRi
TRi+1

tLi−1 tIi tLi
tIi+1 tLi+1

→−� τ →−� τ

Fig. 1 Illustration of the life-cycle performance of a system

Life-Cycle Analysis of Engineering Systems … 469



fTI tð Þ= fTI jLR t LRjð Þℙ LRð Þ+ fTI jLF t LFjð Þℙ LFð Þ. ð2Þ

The remaining of this section presents the estimation equations for different
life-cycle performance measures that were first derived by Kumar and Gardoni
(2014b). Based on the assumptions of the renewal theory (i.e., fTLigi∈ℕ is a
sequence of s.i.i.d. random variables), the estimation equations only need the PDFs
and probabilities in Eqs. (1) and (2) for the first renewal cycle, which are the same
as those for the ith renewal cycle for any i. Such PDFs and probabilities can be
obtained from the modeling of the deterioration and recovery processes, discussed
in Sect. 3.

2.1 Availability

The availability of a system during a time interval ½0, t� is defined as the fraction of
time during which the system is available (or in use), i.e., AðtÞ: = R t

0 1finuseat ξgdξ t̸.

The expected value of the availability is simply 𝔼½AðtÞ�= R t
0 ℙSðξÞdξ t̸, where ℙSðtÞ

is the instantaneous probability that the system is in use at time t and can be
calculated as

ℙS tð Þ= 1−FTI tð Þ½ �+
Z t

0
ℙS t− ξð ÞfTL ξð Þdξ. ð3Þ

2.2 Cost of Operation, Failure Losses, and Benefit

The operation cost, COpðtÞ, includes the total cost of repairs and replacement of the
system in order to operate it up to time t. The expected value of COpðtÞ can be
computed as

𝔼 COp tð Þ� �
=

Z t

0
cŌp ξð Þ+𝔼 COp t− ξð Þ� �� �

e− γξfTL ξð Þdξ, ð4Þ

where cŌpðξÞ: =𝔼½cOp1 jTL1 = ξ� and cOp1 is the cost of the repair or replacement
occurring between events I1 and L1, and γ is the discount rate to compute the Net
Present Value (NPV) of the cost.

The additional costs incurred in the life-cycle of the system includes the failure
losses, CLðtÞ, arising from, for example, injuries, deaths or damage to properties.
The expected value of the failure losses can be calculated as
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𝔼 CL tð Þ½ �=ℙ LFð ÞcLeγTD
Z t+TD

0
e− γξfTLjLF ξjLFð Þdξ+

Z t

0
𝔼 CL t− ξð Þ½ �e− γξfTL ξð Þdξ,

ð5Þ

where cL is the loss corresponding to the event I1, and TD in this equation is the
down-time after an ultimate failure (e.g., TDi+1 in Fig. 1, where Qres = 0).

In addition to the incurred costs, an important consideration in the LCA is the
benefit of operating a system, BðtÞ. If b represents the benefit of having the system
in use for a unit time, the expected benefit can be obtained as

𝔼 B tð Þ½ �= b
Z t

0
ℙS ξð Þe− γξdξ. ð6Þ

We can write the expected net benefit as 𝔼½BnetðtÞ�=𝔼½BðtÞ�−𝔼½CtotðtÞ�−CC,
where 𝔼½CtotðtÞ�=𝔼½COpðtÞ�+𝔼½CLðtÞ� is the expected total cost and CC is the
construction cost.

The estimation equations for the variance of the above quantities, i.e., avail-
ability, cost of operation, failure losses, and benefit, can be derived similarly and
can be found in Kumar and Gardoni (2014b). Next, we discuss the modeling of the
deterioration and recovery processes, which give the PDFs and probabilities
required to estimate the above quantities.

3 Performance Analysis

This section discusses the modeling of the system state under the
deterioration-recovery cycles. We first present the general model for the deterio-
ration processes and then present the model for the recovery process.

3.1 Modeling of Deterioration Processes

To model the deterioration processes and their impact on the system state, we use
the general stochastic model proposed by Jia and Gardoni (2017a). This model
predicts the system state as a function of the values of the state variables that might
vary with time due to multiple deterioration processes. This model (as briefly
described in this section) is adopted here because it allows the consideration of
multiple deterioration processes and their interactions.
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3.1.1 State Change Due to Deterioration

Figure 2 illustrates the overall flowchart of the stochastic model. The modeling
starts with the vector of external conditions/variables at time t, ZðtÞ, partitioned into
(1) environmental conditions/variables (such as temperature, atmospheric pressure,
and relative humidity) denoted as EðtÞ, and (2) shock intensity measures, denoted
as SðtÞ. The external conditions influence the deterioration that the system may be
subject to. Let the vector XðtÞ= ½X1ðtÞ⋯XjðtÞ⋯XnxðtÞ�T denote the state variables of
the structural system at time t. Also let X0: =Xðt=0Þ denote the initial state
variables at a reference time t=0 (e.g., the initial time of construction of the
system). Due to the impacts of multiple deterioration processes (with potential
interactions between them), the state variables typically change with time. The
changes in XðtÞ lead to changes in the capacity of the system, CðtÞ, as well as in the
demand, DðtÞ, imposed by external conditions. The adopted model focuses on
modeling XðtÞ. Once XðtÞ is modeled, it can be used in existing capacity and

External Conditions

Z (t) := [E (t) ,S (t)]

Environmental
conditions E (t)

Shocks/hazards
models S (t)

Gradual
deteriorations

Shock
deteriorations

Multiple Deterioration
Processes

State Variables Models

X (t) := X [t,X0, {Z (t)} ;Θx]

Capacity and Demand Models

C (t) := C [X (t) ;ΘC ]

D (t) := D [X (t) ,S (t) ;ΘD]

System State Model

Q (t) := Q [C (t) , D (t)]

Fig. 2 Overall flowchart for
the stochastic model of the
deterioration processes and
their impact on the system
state (Adapted from Jia and
Gardoni 2017a)
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demand models (as described in the next section), to predict the system state,
measured in terms of an indicator QðtÞ.

The vector of state variables at time t can be written as

X tð Þ=X0 +
Z t

0
Ẋ ξð Þdξ, ð7Þ

where ẊðξÞ is the instantaneous rate of state change at time ξ due to the deterio-
ration processes. Suppose the system is subject to m deterioration processes and let
ẊkðtÞ denote the rate of state change due to the kth deterioration process. To capture
the dependency of the rate on time/age, the state variables of the system at time t,
XðtÞ, and the external conditions, ZkðtÞ, we write ẊkðtÞ as

Ẋk tð Þ: = Ẋk t,X tð Þ,Zk tð Þ;Θx, k½ �, ð8Þ

where ZkðtÞ represents the external conditions that have an impact specifically on
the kth deterioration process, and Θx, k is a vector of model parameters related to the
impact of the kth deterioration process. This formulation is different from existing
ones where ẊkðtÞ only depends on time.

We can then write ẊðtÞ as the sum of the rates associated to individual deteri-
oration processes as

Ẋ tð Þ= ∑
m

k=1
Ẋk t,X tð Þ,Zk tð Þ;Θx, k½ �. ð9Þ

As a special case, if the Ẋk½t,XðtÞ,ZkðtÞ;Θx, k�’s only depend on time, i.e.,
Ẋk½t;Θx, k�, the state variables computed from Eqs. (7) and (9) would be the same as
those computed using the models available in literature (i.e., in Kumar et al. 2015).
The vector XðtÞ is a function of time t, the sequence of all external conditions from
time 0 to t, fZðtÞg, and the vector of model parameters Θx = ðΘx, 1, . . . ,Θx,mÞ.
Therefore, XðtÞ: =X½t,X0, fZðtÞg;Θx�, ẊkðtÞ: = Ẋk½t,XðtÞ,EkðtÞ;Θx, k� for gradual
deterioration processes, and ẊkðtÞ: =ΔXk½Xðt −k, iÞ,Skðtk, iÞ;Θx, k�δðt− tk, iÞ for
t −k, i < t≤ t −k, i+1 for shock deterioration processes, where ΔXk½ ⋅ � is the change due to
the ith shock, occurring at time tk, i, Xðt −k, iÞ is the state variable at time t −k, i (i.e., right
before tk, i), and δð ⋅ Þ is the Dirac delta function.

To implement this model, we need to establish and calibrate specific models for
the changes of the state variables for each deterioration process. The formulation
here is general and can incorporate either a deterministic, probabilistic, or stochastic
model. Jia and Gardoni (2017a) proposed a non-homogeneous state-dependent
Markov process model for gradual deterioration which is able to capture the
associated uncertainties and also the time/age and state-dependence of the deteri-
oration process. The Gamma process, commonly used in the literature to model the
gradual deterioration (van Noortwijk et al. 2007; Li et al. 2015), is just a special
case (i.e., purely age dependent) of this more general stochastic model.
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For shock deterioration, two aspects need to be considered: one aspect is the
modeling of the characteristics of the shocks, including the occurrence
rate/frequency and the intensity; the other aspect is estimating the change of the
state variables due to a shock with a given intensity. Stochastic models such as
Poisson processes, either homogeneous (i.e., with constant occurrence rate)
(Ellingwood and Yasuhiro 1993; van Noortwijk et al. 2007; Kumar et al. 2009;
Kumar and Gardoni 2013, 2014a) or non-homogeneous (i.e., with time-varying
occurrence rate) (Kumar and Gardoni 2012; Iervolino et al. 2014; Li et al. 2015),
have been used to model the random occurrence of shocks. To predict ẊkðtÞ’s due
to shocks, we may use analytical models, if available, or develop/adopt probabilistic
predictive models as those in Kumar and Gardoni (2012, 2014a).

3.1.2 Stochastic Capacity and Demand Models

Given the state variables at time t, XðtÞ, the capacity of the system can be expressed
as

C tð Þ: =C X tð Þ;ΘC½ �, ð10Þ

where C½XðtÞ;ΘC� is a capacity model and ΘC is a set of parameters of the capacity
model. Similarly, the demand that the shock (described by its intensity measure(s)
SðtÞ) imposes on the system can be expressed as

D tð Þ: =D X tð Þ,S tð Þ;ΘD½ �, ð11Þ

where D½XðtÞ, SðtÞ;ΘD� is a demand model and ΘD is a set of parameters of the
demand model. Note that ΘC and ΘD in Eqs. (10) and (11) do not include Θx. As
an example, the capacity and demand models in Eqs. (10) and (11) can follow the
general forms proposed by Gardoni et al. (2002) and (2003). Here, the models in
Eqs. (10) and (11) additionally include the time dependence into the formulations
(Choe et al. 2008, 2009; Pillai et al. 2010; Kim et al. 2012; Kumar and Gardoni
2012; Gardoni et al. 2013). More generally, any appropriate capacity and demand
models that take the state variables as input can be adopted in the formulation.

3.2 Modeling of the Recovery Process

To model the recovery of deteriorated systems, we use the stochastic model pro-
posed by Sharma et al. (2017). This section briefly reviews this model. The
recovery model consists of (1) modeling the occurrence times of the changes in the
system state due to the recovery activities or disrupting shocks that could happen
during the recovery process (between the initiation of the recovery activities and
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before the beginning of a new renewal cycle), and (2) predicting the system state
after each change. Next, we briefly discuss this model.

3.2.1 State Change Due to Recovery

The modeling of the recovery process starts with developing a work plan that
specifies all of the required recovery activities (i.e., their types and numbers). The
recovery work is divided up to a level of detail such that the information about
individual activities (e.g., expenditure and required time) can be obtained from the
readily available resources (e.g., the RS Means database (Means 2008)). The
information about different activities from available resources is typically for a
standard situation (i.e., standardized crews, equipment, methods, and weather
conditions). Therefore, the initial estimates of the durations or expenditures of the
recovery activities might need to be updated based upon the availability of
the budget, materials, skilled labors, or weather conditions. The estimates of the
durations of the individual activities can be combined to estimate the overall
recovery duration. The occurrence of disrupting shocks (e.g., seismic shocks
occurring before the completion of the recovery) might change the scope of the
recovery work and the initial estimate of the recovery duration. The extent of the
change depends on the occurrence time of the shock during the recovery process as
well as its intensity.

Recovery activities that together lead to a change in the system state can be
grouped into recovery steps. The number of completed recovery steps by any time
τ∈ ½0, TR�, is modeled as a Poisson process with a mean function ΛrðτÞ. Sharma
et al. (2017) proposed the following probabilistic predictive model for ΛrðτÞ,
developed following Gardoni et al. (2002):

 Λr τ,ψ;Θrð Þ½ �= ∑pr
k=1 θr, khr, k τ,ψð Þ+ σrεr, ð12Þ

where  ð ⋅ Þ is a transformation function of Λrðτ,ψ;ΘrÞ; Λrðτ,ψ;ΘrÞ is the pre-
dicted mean function; ψ is a set of influencing factors (e.g., budget and weather
condition); Θr = ðθr, σrÞ is a set of model parameters, in which
θr = ðθr, 1, . . . , θr, prÞ; hr, kðτ,ψÞ’s are a set of explanatory functions; and σrεr is an
additive model error term (additivity assumption), in which σr is the standard
deviation of the model error that is assumed to be independent of τ (ho-
moskedasticity assumption) and εr is a standard normal random variable (normality
assumption). The transformation  ð ⋅ Þ is used to approximately satisfy the
homoskedasticity, normality, and additivity assumptions. Note that we can update
Θr based on the data from similar recovery activities in other projects or the
recorded data in ongoing activities in the considered project using a Bayesian
approach as in Gardoni et al. (2007).

The recovery steps correspond to reaching milestones for which the state vari-
ables, XðτÞ, have desired values (typically, in a probabilistic sense). Note that XðτÞ
in the recovery modeling might not necessarily consist of the same set of state
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variables as those in the deterioration modeling. This is because the recovery
process may introduce new state variables to the model or replace a subset of state
variables in the deterioration modeling with new ones. For example, if a retrofit is
implemented using Fiber Reinforced Polymer (FRP) composites, XðτÞ will include
new variables that define the FRP and/or its properties. The impact of disrupting
shocks on XðτÞ is modeled in the same way as it is modeled in the deterioration
modeling (before the beginning of the recovery process) as discussed in the pre-
vious section.

Combining the deterioration and recovery models, we can write the state vari-
ables for every t∈ ½tIi +Tli , tLi � as

X tð Þ: = X τ,X tIi + Tlið Þ, Z tð Þf g;Θx,Θr½ �
X τ,X0, Z τð Þf g;Θx,Θr½ �

� �
, ð13Þ

where X½τ,XðtIi +TliÞ, fZðtÞg;Θx,Θr� is the subset of state variables which are
shared between the deterioration and recovery models, in which XðtIi + TliÞ is the
set of state variables at the beginning of the recovery process obtained from the
deterioration model, and X½τ,X0, fZðτÞg;Θx,Θr� is the subset of state variables
which are augmented due to the recovery process, in which X0 is the initial state
variables at the time they are added to the system during the recovery process.

3.2.2 Stochastic Capacity and Demand Models

As in the deterioration modeling, we can use the estimated XðτÞ from the recovery
modeling in existing capacity and demand models to determine the capacity of the
system and the imposed demand (or capacities and demands in the case of multiple
modes of failure). For example, Tabandeh and Gardoni (2014, 2015) developed
probabilistic capacity and demand models for FRP-retrofitted RC bridges (as a
repair strategy for deteriorated bridge columns) which take XðτÞ as inputs and
estimate the corresponding capacities and demands.

4 Reliability Analysis

In this section, we obtain the instantaneous reliability of the system at any time
during its service life. Let gðtÞ: =CðtÞ−DðtÞ denote a limit-state function such that
gðtÞ≤ 0 defines the failure to meet a specified performance level. Then, we define
the conditional failure probability (or fragility) at time t, given the occurrence of a
shock with intensity measure(s) SðtÞ as F½SðtÞ;Θ�: =ℙ½gðtÞ≤ 0jSðtÞ�, where Θ
includes all of the parameters needed for modeling the state variables and the
corresponding capacities and demands (i.e., Θ= ðΘx,ΘC,ΘDÞ for t∈ ½tLi− 1 , tIi +Tli �
and Θ= ðΘx,Θr,ΘC,ΘDÞ for t∈ ½tIi +Tli , tLi �). To incorporate the uncertainty in Θ
in computing F½SðtÞ;Θ�, there are two possible options (Gardoni et al. 2002).
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First, we may ignore the uncertainty in Θ and obtain a point estimate of the fragility
as F ̂½SðtÞ�: =F½SðtÞ;Θ ̂�, where Θ ̂ is a fixed value of Θ (e.g., the mean value).
Alternatively, we can consider the uncertainty in Θ to obtain a predictive estimate
of the fragility as F ̃½SðtÞ�= R

F½SðtÞ;Θ�f ðΘÞdΘ, where f ðΘÞ is the PDF of Θ.
Given the fragility function at t, F½SðtÞ� (i.e., F ̂½SðtÞ� or F ̃½SðtÞ�), we can write the
instantaneous failure probability Pf ðtÞ as

Pf tð Þ=
Z

F S tð Þ½ �f S tð Þ½ �dS tð Þ, ð14Þ

where f ½SðtÞ� is the PDF of SðtÞ. Using F ̂½SðtÞ� in Eq. (14) leads to a point estimate
of the failure probability (i.e., P̂f ðtÞ) and using F ̃½SðtÞ� leads to a predictive estimate
of the failure probability (i.e., P̃f ðtÞ). We can compute the failure probability in
Eq. (14) using a stochastic simulation approach (see Jia and Gardoni 2017b and
Sharma et al. 2017 for more details). The instantaneous reliability is simply
RðtÞ=1−Pf ðtÞ.

5 Resilience Analysis

This section briefly reviews the model for resilience analysis proposed by Sharma
et al. (2017). Sharma et al. (2017) introduced the Cumulative Resilience Function

(CRF) Q
⌣ðτÞ which gives the overall recovery progress by time τ. Considering the

life-cycle performance indicator, QðtÞ, we can take Q
⌣ðτÞ=QðtÞ for all τ∈ ½0, TR�.

Once Q
⌣ðτÞ is defined, we can use it to define the Instantaneous Rate of the Recovery

Progress proposed by Sharma et al. (2017) according to the following three
mathematical formulations.

Definition 1 When the CRF is a continuous function of time, the instantaneous rate
of the recovery progress is obtained as the time derivative of the CRF. Mathe-

matically, the instantaneous rate can be written as qðτÞ= dQ
⌣

d̸τ, for all τ∈ ½0, TR�,
which is called the Resilience Density Function (RDF). Note that the RDF is
undefined at possible finite set of points, where the CRF is not differentiable (i.e.,
CRF is a continuous function of order 0).

Definition 2 When the CRF is a piecewise constant function, the RDF can no longer
be defined because of the discontinuity in the CRF. In such cases, the Resilience Mass

Function (RMF) is defined as qðτÞ= ∑∞
k=0 ΔQ

⌣ðτkÞδðτ− τkÞ, for all τ∈ ½0, TR�, where
ΔQ

⌣ðτkÞ: =Q
⌣ðτkÞ−Q

⌣ðτ−k Þ is the size of the sudden change in CRF at the discontinuity
point τ= τk (where τ0: = 0); and δð ⋅ Þ is the Dirac delta function. To reflect that at τ0
the CRF is equal to Qres (typically nonzero), we define ΔQ

⌣ð0Þ: =Qres.
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Definition 3 In general, the CRF might be a combination of the previous two cases,
where QðτÞ is a piecewise continuous function. In this case, the instantaneous rate is
written as

q τð Þ= q ̃ τð Þ+ ∑
∞

k=0
ΔQ̃ τkð Þδ τ− τkð Þ, τ∈ 0, TR½ � , ð15Þ

where q ̃ðτÞ is the RDF, corresponding to the continuous part of the CRF and
ΔQ̃ðτkÞδðτ− τkÞ is the RMF, accounting for the discontinuities of the CRF.

The CRFs or RDFs/RMFs of systems provide complete information about the
recovery process and the associated resilience. To help the interpretation of the
CRF, RDF and RMF, one can see the analogy between their definitions and those of
the Cumulative Distribution Function (CDF), Probability Density Function
(PDF) and Probability Mass Function (PMF) that are used to describe random
variables in probability theory.

Sharma et al. (2017) also define partial descriptors to capture the key charac-
teristics of resilience. Such partial descriptors are summarized next. The Center of
Resilience, ρQ, of a given recovery process that we use in this chapter, is defined as

ρQ: =

R TR
0 τq τð ÞdτR TR
0 q τð Þdτ

=
Qres

Qtar
ρQ, res +

Q̄res

Qtar
ρQ̄, res, ð16Þ

where Qres Q̸tar is the contribution of the residual state to ρQ, in which

Qtar: =Q
⌣ðTRÞ; ρQ, res: = τ0 is the center of resilience, when considering only the

residual state; Qr̄es Q̸tar is the contribution of the recovery process to ρQ, in which

Qr̄es: =Qtar −Qres; and the ρQ̄, res: = ½R TR
0 τq ̃ðτÞdτ+ ∑∞

k=1 τkΔQ̃ðτkÞ1f0≤ τk ≤ TRg� Q̸ ̄res
is the center of resilience, when considering only the recovery process. Since τ0 = 0,
Eq. (16) simplifies into

ρQ =
Q ̄res
Qtar

ρQ ̄, res. ð17Þ

The expression for ρQ in Eq. (17) distinguishes between the roles of the residual
system state (which affects Q̄res) and the recovery process (which affects ρQ̄, res) in
the quantification of resilience. Being able to decouple the two contributions
facilitates the determination of the acceptable level of resilience, as an intervention
criterion, in terms of a balance between the system state in the immediate aftermath
of a disruption and the corresponding recovery duration. We also note that the value

of ρQ depends on the choice for Q
⌣ðτÞ (e.g., functionality or instantaneous relia-

bility). As a result, the interpretation of the obtained results for ρQ and decisions
about the acceptable level of resilience depend on such choice.
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As a generalization, the nth resilience moment is defined as

ρ nð Þ
Q : =

R TR
0 τnq τð ÞdτR TR
0 q τð Þdτ

=
Qres

Qtar
ρ nð Þ
Q, res +

Q ̄res
Qtar

ρ nð Þ
Q ̄, res

, ð18Þ

where ρðnÞQ, res: = τn0 and ρðnÞ
Q ̄, res

: = ½R TR
0 τnq ̃ðτÞdτ+ ∑∞

k=1 τ
n
kΔQ̃ðτkÞ1f0≤ τk ≤ TRg� Q̸ ̄res.

We can use ρðnÞQ ’s to capture various characteristics of the RDF/RMF, including its
dispersion and skewness (see Sharma et al. 2017 for further details). Any CRF and

RDF/RMF can be completely characterized in terms of all the ρðnÞQ ’s. The expression
of the resilience moments in Eq. (18) can also account for the impact of disrupting
shocks by letting ΔQ ̃ðτkÞ<0 when a shock occurs at τ= τk <TR.

Analogously to the instantaneous reliability, we define the instantaneous resi-
lience of a system to account for the effect of deterioration processes on the
resilience of the system. The proposed mathematical expression for the instanta-
neous resilience, quantified in terms of ρQ, is

ρQ tð Þ=
Z

ρQ S tð Þ½ �f S tð Þ½ �dS tð Þ, ð19Þ

where ρQ½SðtÞ� is the center of resilience, considering the system state at time t and
given that the system undergoes a recovery process due to the occurrence of a shock
with intensity measure(s) SðtÞ which affect both the Q̄res and ρQ ̄, res; and f ½SðtÞ� is
the PDF of SðtÞ. To account for the uncertainty in Θ, when computing ρQ½SðtÞ�, we
can use a point estimate ρQ̂½SðtÞ� in Eq. (19) which leads to a point estimate of the
instantaneous resilience ρQ̂ðtÞ. Alternatively, we can use a predictive estimate
ρQ̃½SðtÞ� which leads to a predictive estimate of the instantaneous resilience ρ ̃QðtÞ.

6 Illustrative Example

In this section, we illustrate the proposed SLCA by modeling the life-cycle per-
formance of an example RC bridge subject to gradual deterioration due to
chloride-induced corrosion and shock deterioration due to seismic excitations. The
deteriorated bridge then undergoes a recovery process that consists in repairing the
columns using FRP composites. In this example, when the intervention is triggered,
if Qres = 0 a full replacement is carried out; otherwise, a repair is carried out. As part
of the SLCA, we evaluate the impact of the deterioration processes and the selected
repair strategy on the resilience of the RC bridge over its service life. As a
benchmark problem, we consider the RC bridge with one single-column bent in
Kumar and Gardoni (2014b). Figure 3 shows the configuration of the bridge
together with a schematic layout of the hypothetical site of the bridge with respect
to a fault (for modeling the seismic hazard).
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6.1 Modeling of Deterioration of RC Bridges Due
to Corrosion and Seismic Excitations

For the deterioration due to corrosion, we consider the reduction of the diameter of
the reinforcement steel and its impact on the structural properties of the RC bridge
column such as moment curvature characteristics (e.g., ultimate curvature capacity)
and pushover characteristics (e.g., stiffness). For the deterioration due to seismic
excitations, we consider the stiffness reduction and damage accumulation due to
low-cycle fatigue. Essentially, we are modeling both the impact on the state vari-
ables X (e.g., reinforcement steel diameter) and the resultant impact on structural
properties (e.g., ultimate curvature capacity, stiffness, damage index), which are
functions of the state variables X. Modeling the structural properties directly is
convenient in this case because they are the direct inputs to the probabilistic
capacity and demand models used later.

Corrosion and seismic damage interact. For example, the initiation and the rate
of corrosion of reinforcement steel in RC bridges may be accelerated by the for-
mation of cracks caused by past earthquakes. Otieno et al. (2010) found that even
small cracks (with width less than 0.4 mm) may significantly impact the initiation
and propagation of corrosion. The deterioration modeling discussed in Sect. 3.1
allows us to model the interaction between corrosion and seismic damage.

6.1.1 Deterioration Due to Corrosion

To consider the impact of earthquakes on the corrosion initiation, we model the
corrosion initiation time as

Tcorr =min tcorr, t1ð Þ, ð20Þ

where tcorr is a random variable representing the corrosion initiation time as
described in Choe et al. (2008) (i.e., without considering the impact of earth-
quakes); and t1 is the time of the first damaging shock (i.e., an earthquake such that

L1 L2

Dc Ds

Hc
A A

A − A

Kabut

Ksoil

8 km

24 km 24 km

Fault

Bridge Site

Fig. 3 The considered RC bridge and schematic layout of the hypothetical site
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Sa > sa0, where sa0 is a specified threshold beyond which cracks open in the con-
crete). The environmental exposure conditions (e.g., submerged, tidal, splash,
atmospheric) affect the chloride concentration on the surface which in turn influ-
ences tcorr. So, EðtÞ (introduced in Sect. 3.1) includes such exposure conditions.
Equation (20) means that if the corrosion has not initiated before the damaging
shock, it will initiate immediately after that, considering the formation of cracks.
This assumption is supported by the results in Otieno et al. (2010). Overall, as the
rate of earthquakes increases, the corrosion initiation time, Tcorr (or more specifi-
cally t1), shifts towards lower values, compare to the case without considering
earthquake impacts (i.e., Tcorr = tcorr).

To consider the impact of earthquakes on the corrosion rate, we use the fol-
lowing time-dependent model of the diameter of the reinforcement steel (i.e., one of
the state variables in X) according to Jia and Gardoni (2017a):

db t, Tcorrð Þ=
dbi, t ≤ Tcorr

db tNðtÞ, Tcorr
� 	

− rað ÞN tð Þ1.0508 1− w
cð Þ− 1.64

d t− Tcorrð Þ0.71 − tNðtÞ − Tcorr
� 	0.71h i

, Tcorr < t≤ Tf
0, t > Tf

8><
>: ,

ð21Þ

where dbðt,TcorrÞ is the diameter at time t for a given Tcorr; dbi: = dbð0, TcorrÞ is the
diameter at time 0; tNðtÞ is the time of occurrence of the NðtÞth shock whose spectral
acceleration Sa satisfies Sa > sa0 (sa0 is a specified threshold—possibly the same
value already considered for Eq. (20)—beyond which the existing cracks may be
widened and some self-healed cracks may be reopened, which may accelerate the
corrosion process (Otieno et al. 2010); ra is the acceleration factor adopted to
accelerate the corrosion rate after each shock (i.e., the ratio between corrosion rate
after and before each shock); w c̸ is the water-to-cement ratio; d is the cover depth
of the RC section; and Tf is the time when dbðt, TcorrÞ, in theory, reaches zero.
Equation (21) modifies the time-dependent model for the reinforcement steel
diameter in Choe et al. (2008) and Choe et al. (2009) by incorporating the corrosion
rate acceleration due to earthquakes as proposed in Jia and Gardoni (2017a). For
ra =1, the corrosion rate is not accelerated after the earthquake, i.e., Equation (21)
is equivalent to the equation in Choe et al. (2008). Note that the effect of corrosion
acceleration due to earthquakes becomes more obvious as time increases, and also
larger ra leads to faster reduction of db. Equation (21) is a particular case of the
general expression XðtÞ=X0 +

R t
0 ẊðξÞdξ in Eq. (7).

In this example, we assume the submerged exposure condition (which affects
tcorr) and for corrosion acceleration, we set sa0 = 0.1 g and ra =1.2. These numerical
values are assumed for illustrating the proposed formulation. This chapter is con-
cerned with the development of a general mathematical formulation and the specific
assessment of sa0 and ra is beyond its scope. Additional studies should assess the
most appropriate values of sa0 and ra for specific structure and site.
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The changes in db lead to changes in the moment curvature characteristics such
as ultimate curvature capacity of the RC section, ϕu, and the pushover character-
istics such as pre-yield lateral stiffness, K, and the displacement at yield, Δy. When
considering the seismic damage, we model directly such derived structural prop-
erties. To combine the corrosion and seismic damage, we convert the effect of
corrosion on X into the effects on the structural properties. Based on dbðt, TcorrÞ
from Eq. (21), we can estimate the corresponding state-dependent values of ϕuðtÞ,
ΔyðtÞ, and KðtÞ. Jia and Gardoni (2017a) developed probabilistic models for these
structural properties. These models are calibrated based on data from virtual
experiments (i.e., moment curvature analyses and pushover analyses) using dif-
ferent combinations of dbi and dbðt, TcorrÞ.

6.1.2 Deterioration Due to Seismic Excitations

To model the deterioration due to seismic excitations, we first need to model the
seismic hazard, including the occurrence of damaging earthquakes and the PDF of
their intensity measure(s), (i.e., Sa in this example). Following Kumar and Gardoni
(2012), the occurrence of earthquake mainshocks is modeled as a homogeneous
Poisson process, and between the mainshocks, the occurrence of aftershocks is
modeled as a non-homogeneous Poisson process. The time-varying rate of after-
shocks is given by the modified Omari’s law (Omari 1894; Utsu et al. 1995)

λ ta,m;mmð Þ= 10υ0 + υ1 mm −mð Þ

ta + υ2ð Þυ3 , ð22Þ

where λðta,m;mmÞ is the mean daily rate of aftershocks with magnitude m or larger
at time ta, following a mainshock of magnitude mm; υ0, υ1, υ2, and υ3 are model
parameters and are related to the regional seismicity. Typical values are in the range
υ0 ∈ ½− 3, − 0.5�, υ1 ∈ ½0.35, 1.7�, υ2 ∈ ½0.01, 0.1�, and υ3 ∈ ½0.7, 1.5� (Reasenberg
and Jones 1989; Godano et al. 2014). We assume the following values for the
model parameters in Eq. (22): υ0 = − 1.67, υ1 = 0.91, υ2 = 0.05, and υ3 = 1.08. For
the mainshocks, we assume υ0 = 3.8. These values are typical of seismically active
regions. For the fault considered in this example, we assume that it can generate
earthquakes with magnitudes up to 8.0. We note that small earthquakes have an
associated Sa <0.1 g at the bridge site (therefore corrosion does not
initiate/accelerate after their occurrence). Similarly, medium to large earthquakes
have an associated Sa >0.1 g at the bridge site (therefore corrosion does
initiate/accelerate after their occurrence).

Given the occurrence rate of the earthquakes and the site layout in Fig. 3, we obtain
the values of Sa at the site by performing a probabilistic seismic hazard analysis for the
mainshock-aftershocks sequence. The details of the seismic hazard analysis can be
found in Kramer (1996) and Yeo and Cornell (2009). Next, we estimate the corre-
sponding changes in X (e.g., establish a model for ΔXk½Xðt −k, iÞ,Skðtk, iÞ;Θx, k� as
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discussed in Sect. 3.1) or, more specifically, the impact on the structural properties for
a given value of Sa. In this example, we use the probabilistic models developed by
Kumar and Gardoni (2014a) that predict the degradation of static pushover properties
of RC columns as a function ofX and Sa. The specific properties that we consider are
as for the gradual deterioration: the ultimate curvature capacity of the RC section, ϕu,
and the pushover characteristics such as pre-yield lateral stiffness, K, and the dis-
placement at yield, Δy. Additional details on the development of state-dependent
models using the probabilistic models developed in Kumar and Gardoni (2014a) can
be found in Jia and Gardoni (2017b).

To estimate the time-varying capacity and demand, we use the predicted
time-varying state variables and structural properties in the probabilistic capacity
model developed by Gardoni et al. (2002) and the demand model developed by
Gardoni et al. (2003). In terms of failure modes, in this example we focus on the
dominant deformation failure (Gardoni et al. 2002).

6.2 Modeling of Recovery Process

Figure 4 shows the developed work plan for the repair of the deteriorated bridge
column, using FRP composites. In this example, we consider FRP application as the
sole recovery step. This means that the recovery activities in the work plan might
continuously progress over time but the performance (e.g., reliability) of the system
changes only after applying FRP on the bridge column. Table 1 shows the estimates
of the durations of the individual activities in the work plan, using data from RS
Means database (Means 2008) and similar projects (see Saini and Saiidi 2013). The
table also shows the set of predecessors (recovery activities needed before a specific
activity can start) of each activity. The information on the predecessors is required
to estimate the completion time of the recovery process. In this example, because
there is only one recovery step, the completion time of the recovery step is directly
the completion time of the recovery process.

The recovery time is estimated by simulating the durations of the recovery
activities in the plan. For this purpose, we model the duration of each individual
recovery activity with a Beta distribution and use stochastic activity network
scheduling techniques (Duncan 1996) to simulate the progression of the work and
estimate the completion time. Note that when the number of recovery steps is more
than one, we can use the same approach to generate data for the completion times of
different recovery steps and then use the generated data to estimate Θr in Eq. (12).

The recovery process introduces new state variables (i.e.,
X½τ,X0, fZðτÞg;Θx,Θr� in Eq. (13)), which are FRP properties: thickness, tensile
strength, and Young’s modulus. The recovery process also affects ϕuðtÞ and ΔyðtÞ
(but not KðtÞ), the extent of which depends on the FRP properties. The FRP
properties are determined such that the repaired system achieves a desired state. In
this example, we assume that the repair of the deteriorated bridge improves its
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reliability by 10 percent with respect to the as-built condition. The FRP properties
are then designed accordingly to meet this target reliability. The possible disrupting
shocks during the recovery only affect ϕuðtÞ, ΔyðtÞ, and KðtÞ because they are
functions of the original state properties of the column, but not of the new state
variables because it is assumed that the recovery process ends after applying the
FRP.

Table 1 The time table of the required recovery activities to repair the deteriorated RC bridge
with FRP composites

Number Activity Duration (days) Predecessor
Lower
bound

Most
likely

Upper
bound

1 Inspection 2 3 5
2 Bidding 15 20 30 1
3 Mobilization 5 7 15 2
4 Erection of scaffold

(abutment)
1 2 3 3

5 Erection of temporary
support

1 2 3 3

6 Erection of scaffold
(pier)

1 2 3 3

7 Concrete chipping
(abutment)

1 2 3 4

8 Epoxy grouting
(abutment)

1 2 3 7

9 Mortar patching
(abutment)

1 2 3 8

10 Curing (abutment) 7 10 15 9
11 Removal of scaffold

(abutment)
1 2 3 10

12 Concrete chipping (pier
top)

1 2 3 4 and 5

13 Epoxy grouting (pier
top)

2 3 3 12

14 Patching concrete (pier
top)

1 2 3 13

15 Curing (pier top) 7 10 15 14
16 FRP surface prep (pier) 0.5 1 2 15
17 Apply FRP (pier) 0.5 1 2 16
18 Removal of scaffold

(pier)
0.5 1 2 15 and 17

19 Minor repairs 3 4 5 11 and 18
20 Demobilization 0.5 1 2 19
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6.3 Results and Discussion

6.3.1 Instantaneous Reliability and Resilience

We estimate the reliability and resilience of the RC bridge, using Eqs. (14) and
(19). Figure 5a shows the calculated time-variant predictive fragility, F ̃ðt, SaÞ, and
the PDF of Sa, f ðSaÞ, at t= 0 and 150. Figure 5b shows the corresponding instan-
taneous failure probability, P̃f ðtÞ. Figure 5b also shows the confidence band (be-
tween the 0.15 quantile and the 0.85 quantile) due to the epistemic uncertainty in
the model parameters Θ. Here, Sa is the intensity measure of a possible future
earthquake, while the bridge has been deteriorating over the period ½0, t� because of
both corrosion (according to Sect. 6.1.1) and seismic excitations experienced before
the one with intensity Sa (according to Sect. 6.1.2). As expected, the F ̃ðt, SaÞ
and P̃f ðtÞ increase with time due to the impact of deterioration processes. In
particular, Fig. 5b shows that the failure probability of the as-built bridge signifi-
cantly increases over 150 years (on average, from P ̃f ðt=0Þ=5.1 × 10− 4 to
P̃f ðt=150Þ=6.4 × 10− 1). This observation clearly shows that without considering
the deterioration process, we are substantially underestimating the failure
probability.

Figure 6a shows the calculated predictive resilience surface, ρ ̃ðt, SaÞ, and f ðSaÞ
at t= 0 and 150, and Fig. 6b shows the predictive instantaneous resilience, ρ ̃ðtÞ.
Figure 6b also shows the confidence band due to the epistemic uncertainty in Θ. At
any given time t, ρ ̃ðt, SaÞ shows the impact on resilience (i.e., Q ̄res Q̸tar) due to a
disrupting shock, in terms of its Sa, after which the system undergoes the recovery
process. Such impact becomes more significant with time, where a unit increase of
Sa leads to a larger change in ρ ̃ðt, SaÞ at the later stages of the bridge service life
than the earlier stages. Due to the impact of deterioration, the resilience of the
bridge decays over time which is represented by the increasing trend of ρ ̃ðt, SaÞ and
ρ ̃ðtÞ over time.
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Fig. 5 Calculated a time-variant fragility and b instantaneous failure probability of the example
RC bridge, considering the deterioration due to corrosion and seismic excitations
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6.3.2 Life-Cycle Performance Measures

To estimate the life-cycle performance measures, we have to first specify an
intervention criterion. In this example, we determine the intervention time based on
a prescribed acceptable resilience level, ρacc. With this choice, the decision about
the intervention time not only accounts for the system state in the immediate
aftermath of a disruption (i.e., Q̄res Q̸tar) but also for the recovery time needed to put
back the system into the operation (i.e., ρQ̄, res). Alternatively, one could determine
the intervention time based on an acceptable RðtÞ level. We assume that there is a
lag period, Tl, of 3 months between the intervention time and the beginning of the
recovery. Because the recovery is not instantaneous, it is important to consider (as
the proposed formulation allows us to do) the likely extra damage to the bridge due
to aftershocks during the lag period.

Due to the repair of the deteriorated column with FRP composites, the perfor-
mance of the RC bridge in the following cycles would be different from the one
before the repair. One might expect, for example, that the deterioration rate after the
repair is faster because the corrosion has already started and, in addition, we have to
account for the deterioration of FRP composites. We assume that the considered
10% improvement in the initial system state compensates for the faster deterioration
rate such that the assumption of the renewal process, namely that the TLi ’s are s.i.i.
d., still holds. Note that the assumption of having a renewal process is only related
to the calculation of life-cycle performance measures and does not affect the
instantaneous reliability and resilience calculations.

Figure 7 shows the calculated fTI ðtÞ, fTI jLF ðtjLFÞ, and fTI jLRðtjLRÞ for ρacc = 28
days as the acceptable level of resilience. The corresponding value of ℙðLRÞ is
0.624. If we consider two other options for ρacc (i.e., 21 and 14 days), we see that
ℙðLRÞ tends to increase as ρacc decreases (i.e., ℙðLRÞ = 0.777 and 0.903, respec-
tively). This trend is expected, because the smaller values of ρacc mean more
frequent repairs and therefore fewer replacements (i.e., larger value of ℙðLRÞ). The
marginal and conditional PDFs of TL, fTLðtÞ and fTLjLF ðtjLFÞ, can be calculated using
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Fig. 6 Calculated a resilience surface and b instantaneous resilience of the example RC bridge,
considering the deterioration due to corrosion and seismic excitations
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the relation TL = TI + TD, where the distribution of TD is obtained from the recovery
process. Because the contribution of TI to TL dominates in this example, the
marginal and conditional PDFs of TL are close to those of TI , and are not shown in
Fig. 7.

Once we have fTI ðtÞ, fTLðtÞ, fTI jLF ðtjLFÞ, and fTLjLF ðtjLFÞ, we use them in the
equations presented in Sect. 2 to estimate the life-cycle performance measures. In
this example, we only consider the costs and benefits to the bridge’s owner. The
same formulation could include the costs and benefits to the bridge’s users. We
assume that the operation cost is proportional to the bridge’s replacement value and
for the current example, we assume cŌp =0.2CC. Also, we assume cL =2CC,
γ =0.04 year−1, and b=0.1CC year−1according to Kumar and Gardoni (2014b).
The value of the discount rate, γ, is related to a country’s level of development,
where a value of γ between 0.02 and 0.08 is typical for developed countries
(Thoft-Christensen 2012). The benefit of having the bridge in use for a unit time, b,
is typically determined based on the product of the average daily traffic on the
bridge throughout a year and the average benefit derived from each vehicle passing
the bridge (Thoft-Christensen 2012). The quantities in the following analyses and
figures are normalized by CC.

Figure 8 shows the instantaneous probability of being in use, ℙSðtÞ, and the
expected availability, 𝔼½AðtÞ�, as functions of time. The relations are plotted for
three different values of ρacc. In Fig. 8a, we observe that (for all the three values of
ρacc) ℙSðtÞ initially decreases, and then gradually increases toward an asymptotic
value. The initial decrease is because as the system operates it deteriorates and
becomes more likely to be out of service for a repair or replacement. The instan-
taneous probability of being in use reaches a minimum at the most likely time of the
first repair or replacement. After, ℙSðtÞ starts to increase because a repair or
replacement has typically taken place. We also observe that at t larger than the most
likely time of the first repair or replacement, ℙSðtÞ is larger for smaller values of
ρacc. This is because having more repairs is likely to prevent an ultimate failure that
would result in being out of service for an extended period of time. A similar
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observation can be seen in Fig. 8b for 𝔼½AðtÞ�, where in the long term, smaller
values of ρacc (frequent repairs) lead to higher 𝔼½AðtÞ�.

Using Eq. (4) and the value for cŌp, we can estimate the expected operation cost,
𝔼½COpðtÞ�. Figure 9a shows 𝔼½COpðtÞ� as a function of time and ρacc. We observe
that the larger values of ρacc lead to larger values of 𝔼½COpðtÞ�. This is because in the
long term more frequent repairs help to avoid the replacement cost due to the
occurrence of an ultimate failure.

Figure 9b shows 𝔼½CLðtÞ� as a function of time and ρacc. We observe that the
value of 𝔼½CLðtÞ� increases with time for all three cases and after t≈ 80 years it
becomes almost constant. This leveling behavior is because the discount rate makes
the costs associated with the events occurring after a sufficiently long period
irrelevant to the decision made at t=0. We also observe that 𝔼½CLðtÞ� decreases as
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Fig. 8 The effect of ρacc on the a instantaneous probability of being in use and b availability of
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ρacc decreases. This is because smaller ρacc means frequent repairs, smaller ℙðLFÞ,
and therefore lower 𝔼½CLðtÞ�. Comparing the numerical values of 𝔼½COpðtÞ� and
𝔼½CLðtÞ�, we see that 𝔼½CLðtÞ� is significantly larger.

Figure 10 shows the expected total cost 𝔼½CtotðtÞ�=𝔼½COpðtÞ�+𝔼½CLðtÞ� as a
function of time and ρacc. The trend over time of 𝔼½CtotðtÞ� is similar to those of
𝔼½COpðtÞ� and 𝔼½CLðtÞ�. Because in this example 𝔼½CLðtÞ� is significantly larger than
𝔼½COpðtÞ�, the values of 𝔼½CtotðtÞ� are similar to those of 𝔼½CLðtÞ�. The obtained
results show that when considering the expected total cost, an optimal mitigation
strategy would use the smallest value of ρacc (among the three considered).
Figure 10a also shows the variation of 𝔼½Ctotðt=100Þ� as a function of
ρacc ∈ f7, 14, 21, 28g. We observe that 𝔼½Ctotðt=100Þ� is the largest for ρacc = 28
days. This is because 𝔼½CLðt=100Þ� is the largest for ρacc = 28 days and it domi-
nates 𝔼½Ctotðt=100Þ�.

Figure 11 shows the expected benefit 𝔼½BðtÞ� and the expected net benefit
𝔼½BnetðtÞ�. We observe that 𝔼½BðtÞ� increases with time and after t≈100 years the
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rate tends to zero. The leveling behavior is because the discount rate makes the long
term benefits irrelevant to the decision made at t=0. This is similar to the con-
sideration of the long term costs when computing 𝔼½CtotðtÞ�. In this example, we
observe that the differences in the values of 𝔼½BðtÞ� for the three values of ρacc are
not significant. This is because the value of 𝔼½BðtÞ� depends on ℙSðtÞ, which is not
significantly different for different values of ρacc for small values of t, as shown in
Fig. 8a and the differences in ℙSðtÞ for larger values of t are tapered down by the
discount rate. Figure 11b shows that 𝔼½Bnetðt=0Þ� C̸C = − 1 because there is no
accumulated benefit at t=0 but there is a construction cost
(𝔼½BnetðtÞ�=𝔼½BðtÞ�−𝔼½CtotðtÞ�−CC). After t≈13 years, the expected benefit
generated by the example bridge exceeds the costs, for all the three values of ρacc.
As a result, 𝔼½BnetðtÞ� becomes positive. We observe that 𝔼½BnetðtÞ� increases as ρacc
decreases. This is because 𝔼½BðtÞ� is almost the same for the three values of ρacc but
the 𝔼½CtotðtÞ� decreases as ρacc decreases.

It is important to note that the figure does not imply that the 𝔼½BnetðtÞ� increases
indefinitely by decreasing ρacc. When the frequency of interventions exceeds the
frequency of the occurrence of earthquakes, 𝔼½CtotðtÞ� increases without gains in
𝔼½BðtÞ�. As a result, 𝔼½BnetðtÞ� would start decreasing. A full optimization is beyond
the scope of this chapter. However, the proposed SLCA can be used directly in an
optimization process to find, for example, the optimal ρacc. In addition, while this
chapter reported results for the expected values of costs and benefits, an optimal
design and mitigation strategy can also be investigated considering the tails of the
distributions of COpðtÞ, CtotðtÞ, and BnetðtÞ.

7 Conclusions

This chapter proposed a general stochastic formulation for the Life-Cycle Analysis
(LCA) of deteriorating engineering systems, named Stochastic Life-Cycle Analysis
(SLCA). The life-cycle of an engineering system is shaped by deterioration pro-
cesses and repair/recovery process, both characterized by several sources of
uncertainty. In the SLCA, state-dependent stochastic models are proposed to cap-
ture the impact of deterioration processes and repairs/recovery strategies on the
engineering systems in terms of performance measures like instantaneous reliability
and resilience. The proposed formulation integrates the state-dependent stochastic
models with the previously developed Renewal Theory-based Life-Cycle Analysis
(RTLCA) to efficiently evaluate additional system performance measures such as
availability, operation cost and benefits.

The formulation is illustrated through the life-cycle analysis of an example RC
bridge subject to deterioration caused by corrosion and seismic excitations. For the
recovery process, the deteriorated bridge column is repaired with FRP composites.
Resilience is used to defined an intervention criterion that triggers the repair of the
deteriorated system. With this choice, the decision about the intervention time
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accounts for both the system state in the immediate aftermath of a disruption and
the recovery time to put back the system into the operation. The results show that
the deterioration processes significantly impact both the instantaneous failure
probability and resilience of the example bridge. The level of impact is such that the
estimated failure probability of the undamaged bridge significantly underestimates
the probability of failure of the deteriorated bridge. The results also indicate that for
longterm service life, it is generally economically advantageous to have frequent
repairs which reduce the probability that the bridge would be out of service for an
extended period of time. While beyond the scope of this chapter, the proposed
SLCA can be used in the full optimization of the initial design and mitigation
strategies of engineering systems accounting for their life-cycle performance.
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Fragility Curves of Restoration Processes
for Resilience Analysis

Gian Paolo Cimellaro

Abstract In literature the fragility curves are usually adopted to evaluate the prob-

ability of exceedance of a given damage state. This chapter presents for the first

time a procedure for developing fragility curves of restoration processes which can

be adopted for resilience analysis. The restoration process describes the capacity to

recover from a system failure and it is one of the most uncertain variables in the

resilience analysis therefore, the problem should be treated in probabilistic terms. In

the chapter, a method is proposed for evaluating the Restoration Fragility Functions

(RFF) of a given system following an extreme event. The restoration curves have

been built empirically using the data obtained by a discrete event simulation model

of the system considered. Different restoration processes obtained through Monte

Carlo simulations have been analyzed statistically to determine the probability of

exceedance of a given restoration state. Then, Restoration Fragility Functions (RFF)

are obtained using the Maximum Likelihood Estimation (MLE) approach assuming

a lognormal cumulative distribution function. The method has been applied to an

Emergency Department of a hospital during a crisis, because these buildings are crit-

ical facilities which should withstand after an earthquake in order to assist injuries.

Two different case studies have been compared: the Emergency Department (ED)

with and without emergency plan.

1 Introduction

Hospitals are critical facilities which affect the emergency response after a

catastrophic event such as a strong earthquake. The non-functionality of an Emer-

gency Department (ED) during an emergency might significantly impact the health

care services and affect the recovery process. The hospital’s capability to remain

accessible and able to function at maximum capacity, providing its services to

the community when they are most needed can be evaluated using the resilience
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indicators (Cimellare et al. 2016). A possible resilience indicator for health care

facilities is the waiting time, which is the time a patient waits from the moment

he/she walks in the ED until he/she receives the first service from medical personnel

(Cimellaro et al. 2010, 2011). A key role in the evaluation of the resilience indicator

is played by the recovery time and the shape of the restoration curve, because they are

both uncertain quantities. Therefore, in this chapter a procedure for building fragility

curves of restoration processes called Restoration Fragility Functions (RFF) which

can be adopted for resilience analysis, is presented. RFFs are introduced to take into

account the uncertainties of the restoration process. In detail, RFFs are defined as

the probability of exceedance of a given restoration process when a certain damage

state occurs. To calculate the RFF it is necessary to define the functionality (Q) of

the system considered and the recovery time. The Emergency Department (ED) of

the Umberto I Mauriziano Hospital in Turin Italy is considered as case study. After

building and calibrating a Discrete Event Simulation (DES) model of the Emergency

Department (ED) using real data collected on site, different scenarios has been tested

by modifying the patient arrival rate and changing the number of available emer-

gency rooms. In this research two scenarios have been considered: the ED with

emergency plan applied and the ED in normal condition. RFFs of both cases are

compared.

1.1 State of the Art

In the current state-of-art, fragility functions describe the conditional probability that

a structure, a nonstructural element or in general a system, will exceed a certain dam-

age state, assuming a certain demand parameter (e.g. story drift, floor acceleration

etc.) or earthquake intensity level (e.g. peak ground acceleration (PGA), peak ground

velocity (PGV) or spectral acceleration (SA)) is reached. Usually, fragility functions

take the form of lognormal cumulative distribution functions, having a median value

and logarithmic standard deviation, (Porter et al. 2007). The first attempts to intro-

duce uncertainties in the restoration processes of infrastructures such as bridges is

present in the work of Zhou and Frangopol (2014) where they defined the probability

of a bridge experiencing different performance and functionality levels (e.g. one lane

closed, all lanes closed). They were inspired by the Federal Highway Administration

(FHWA 1995), which following ATC-13 (ATC-13 1985), modeled the restoration

process of bridge functionality by a normal cumulative distribution function corre-

sponding to each bridge damage state considered. In fact, the recovery functions are

highly dependent on their associated damage states. For example, a bridge catego-

rized in a severe damage state may need more time to be restored to its full func-

tionality compared to a bridge slightly damaged. On the other hand, in this paper,

the recovery functions are computed for three different Damage States (DS), no dam-

age, moderate damage and complete damage. For each DS a characteristic restoration

curve is defined.
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2 Restoration Fragility Functions

This chapter presents for the first time a procedure for building fragility curves of

restoration processes which can be adopted for resilience analysis. RFF is the prob-

ability of exceedance of a given restoration curve (rf) when a certain Damage State

(DS) occurs for a given earthquake intensity measure I. The general definition of

RFF based on earthquake intensity I is given by

RFF (i) = P
(
RFj ≥ rfDS1

|||DS = DS1, I = i
)

(1)

where the RFj = jth restoration function; rfj = restoration function associated to

a given damage state DS(1, 2, n); I = earthquake intensity measure which can be

represented by pga= peak ground acceleration; pgv= peak ground velocity; PVS
=pseudovelocity spectrum; MMI = modified Mercalli intensity scale, etc.; and i=

given earthquake intensity value. The main difference between RFF and standard

fragility functions is that the RFF is correlated to a given Damage State (DS). In

other words, RFF is conditional on DS and I, while standard fragility curves are

only conditional on the intensity measure I.

3 Methodology

The RFF are evaluated using the experimental data of the restoration curves col-

lected by the numerical analyses of the model considered. Different output can be

considered, but in this specific case, the waiting time (WT) spent by patients in the

emergency room (ER) before receiving care. (Cimellaro et al. 2010), is considered as

an indicator of functionality. In particular, the following relationship has been used

to define its functionality Q:

Q =
WT0
WT

(2)

where WT0 is the acceptable waiting time in regular condition, when the hospital is

not affected by a catastrophic event, and WT is the waiting time collected during the

simulation process. When the WT is less or equal to WT0, the value of Q is equal to

1, meaning that the hospitals functionality is at its maximum. Different restoration

functions (rf ) associated at different damage states have been chosen. Then, for each

simulation, the probability of exceedance of a given restoration curve (rf ) has been

calculated. The frequency of exceedance at a given instant is defined as

f = N
Ntot

(3)
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where N is the number of times when the restoration curves exceed the restoration

curve associated at a given damage state; Ntot is the number of simulations. Finally

the probability of exceedance of a given restoration state has been calculated by

Pex =
∑

fi
T

(4)

where
∑

fi is the sum of the frequencies at each time instant, while T is the length

of the simulation (e.g. T = 12 days in the case study). Finally, different methods to

fit fragility curves are compared such as:

1. MLE method: maximum likelihood method;

2. SSE method: sum of squared errors;

4 Case Study: The Mauriziano Hospital in Turin

The Umberto I Mauriziano Hospital located in Turin, Italy (Fig. 1) has been con-

sidered as case study to show the applicability of the methodology. The hospital

is located in the southeast part of the city, at almost 3 Km from downtown. It was

built in 1881 but it was bombed several times during World War II. This explains

why several buildings have been rebuilt or added. Presently the hospital includes 17

units, which correspond to different Departments and it covers an overall surface of

Fig. 1 The Mauriziano hospital in Turin, Italy
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Fig. 2 Hospitals units

emergency department

building

52827m2
. Only the Emergency Department (building 17) has been modeled in this

case study (Fig. 2).

A discrete event simulation model (DES) of the emergency department has been

developed (Fig. 3) using ProModel version 7.0, downloaded on February 15, 2014.

Discrete event simulation models represent useful tools to test Emergency Plans

response under a rapid increase in the volume of incoming patients. Using discrete-

event Monte Carlo computer simulation, hospital administrators can model differ-

ent scenarios of the hospital to see how they compare to the desired performance

Fig. 3 DES model of the Mauriziano hospital in promodel
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(Morales 2011). Moreover, DES model allows investigating and planning the use of

hospital resources (Šteins 2010). The data input of the model is the patient’s arrival

rate in normal operating conditions, which has been extracted by the hospital’s reg-

ister statistics. These data have been used to calibrate the model. During the emer-

gency, the increments of patients entering in the ED has been obtained using the data

collected in a Californian hospital during 1994 Northridge earthquake. The pattern

of the Northridge patient arrival rate is given in (Cimellaro et al. 2011). Then the

patients’ arrival rate has been scaled to the seismic hazard in Turin using a proce-

dure based on the Modified Mercalli Intensity (MMI) scale. An earthquake with a

return period of 2500 years has been considered, assuming a nominal life for a build-

ing of strategic importance of 100 years according to the Italian seismic standards

(NTC-08 2008). RFFs both with and without emergency plan are compared. The

emergency plan is considered effective if the waiting time obtained when the emer-

gency plan is applied is significantly lower than the waiting time obtained under

emergency conditions when the emergency plan is not active.

4.1 Hospital Performance and Restoration Functions (rf)

Generally, the performance of a hospital under seismic hazard is quantified consid-

ering all its possible damage states. The performance of the Emergency Department

(ED) is quantified within this paper by mapping the current damage state to a value

between 0 and 1.0. Assuming a certain damage state occurs in the hospital, then dif-

ferent restoration functions (rf) can be applied to the damaged structure to restore its

functionality. However, the restoration functions (rf) of the ED are highly dependent

on their associated damage states. For example, an ED categorized in a severe dam-

age state may need more time to be restored to its full functionality compared to an

ED slightly damaged, so some rfs have more probability to happen with respect to

others.

4.2 Numerical Results

As outputs of the model, the waiting times of the ED when the emergency plan is

active have been collected for different scenarios. Three different damage states (DS)

have been considered:

1. DS = Fully operational/No Damage (n = 0);

2. DS = Moderate Damage (n = 1);

3. DS = Severe Damage (n = 2);

where n is the number of emergency room not functional because damaged by the

earthquake. For each DS, several simulations have been conducted by changing the

intensity of the seismic event using the methodology described above. The intensity
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Fig. 4 Functionality curves as a function of seismic intensity, no damage (n = 0)

has been increased by means of scale factors that multiplied the patient arrival rate.

Three different Restoration Functions (RFs) have been chosen as comparison. The

results are shown in the following paragraphs. The functionalityQ of the ED has been

evaluated for increasing seismic intensities based on the Modified Mercalli Intensity

(MMI) scale (Fig. 4, 5 and 6). Each graph shows different damage states (DS):

Fig. 5 Functionality curves as a function of seismic intensity, moderate damage (n = 1)
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Fig. 6 Functionality curves as a function of seismic intensity, severe damage (n = 2)

∙ Emergency plan fully operational with n = 0, where n is the number of emergency

room not available because damaged by the earthquake (Fig. 4);

∙ Emergency plan affected by moderate damage (n = 1) (Fig. 5);

∙ Emergency plan affected by severe damage (n = 2) (Fig. 6);

As shown in the graphs, the functionality is reduced and the recovery time

increases when two emergency rooms are not operative. The functionality is also

dependent on the seismic intensity. As the seismic intensity increases, the restora-

tion curves take longer recovery time to get back at their initial functionality. In Fig. 7

for higher seismic intensities, the functionality at the end of the simulation doesn’t

reach the ideal value, showing that the emergency department is not yet back to its

original operating condition.

In this case study, the Modified Mercalli Intensity (MMI) scale has been adopted,

but other parameters such as peak ground acceleration (PGA), peak ground velocity

or spectral acceleration (SA) can also be used. Three restoration functions (rf) asso-

ciated to specific damage states have been chosen to calculate the fragility restora-

tion curve. The rfs chosen in this study refer to the functionality curve assuming no

damage (RF0), moderate damage (RF1) and complete damage (RF2). As shown in

Fig. 7, RF0 has a restoration time of 1 day, while RF1 and RF2 have restoration times

of 2 days and 6 days respectively. The restoration time tr specifies how long the ED

takes to recover from a disaster.

The restoration fragility functions for each damage state scenario have been cal-

culated. RFF is the probability that a given restoration function rf (Fig. 7) is reached

when a certain damage state (DS) occurs for a given earthquake intensity measure I.
In Fig. 8, 9 and 10 the probability of restoration are plotted. The lognormal cumu-

lative distribution function is used to fit the data, to provide a continuous estimate
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Fig. 7 Restoration functions assuming earthquake of magnitude VI

Fig. 8 RFF given DS = 0 (no damage) using MLE and SSE methods, ED with emergency plan

applied

of the probability of restoration as a function of MMI. Two different methods to fit

fragility curves are compared:

∙ MLE method: maximum likelihood method;

∙ SSE method: sum of squared errors;
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Fig. 9 RFF given a DS = 1 (moderate damage) using MLE and SSE methods, ED with emergency

plan applied

Fig. 10 RFF given a DS = 2 (severe damage) using MLE and SSE methods, ED with emergency

plan applied
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Fig. 11 RFF given a DS = 0 (no damage) using MLE method, ED without emergency plan

Fig. 12 RFF given a DS = 1 (moderate damage) using MLE method, ED without emergency plan

As shown in Fig. 8, 9 and 10, the two fitting methods have similar results. In Fig. 8

the probability of exceedance the restoration function RF0 increases with the incre-

ment of the MMI. For higher MMI, the probability of exceedance of RF1 reaches

the probability of exceedance of RF0. In Fig. 8 the same behavior can be observed.

In Fig. 8 the probabilities of exceedance of RF0 and RF1 overlap. The RRF related

to RF2 increases considerably respect to the previous DSs.
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Fig. 13 RFF given a DS = 2 (severe damage) using MLE method, ED without emergency plan

Figures 11, 12 and 13 show the RFFs related to the ED without emergency plan.

Results and comparison between RFFs of both cases are presented in the following

paragraph.

4.3 RFF Comparison Between ED with and Without
Emergency Plan Applied

As can be seen in Figs. 8, 9, 10, 11, 12 and 13, the probability of exceedance of a

given restoration curve is higher without emergency plan than when the emergency

plan is applied. Therefore, the emergency plan can be considered effective, since

the waiting time when the emergency plan is applied is significantly lower than the

waiting time without emergency plan. However, the only exception is in Figs. 10 and

13, when the damage state is severe (DS = 2), because in that case the RRFs of both

case scenarios mainly overlap.

5 Conclusions

The chapter presents a methodology for building Restoration Fragility Functions

(RFF), which describe the probability of exceedance a given restoration curve asso-

ciated to a given damage state. The reasons for introducing RFFs is because the

restoration process is one of the most uncertain variables in the resilience analysis
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therefore, it is necessary to consider it in probabilistic terms. Restoration fragility

functions can be a useful tool to define resilience of a hospital network. They can

be used to estimate the restoration process of the emergency department as a func-

tion of the seismic intensity. The main difference between RFF and standard fragility

functions is that the RFF is correlated to a given damage state (DS). In other words,

RFF is conditional on DS and I, while standard fragility curves are only conditional

on the intensity measure I. The method has been applied to the model of the Emer-

gency Department of an existing hospital during a crisis when the emergency plan is

applied and in regular condition. The data used for building the fragility curves are

related only to the yellow code, while the restoration functions (RF) refer to three

damage states (DS).
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A Decision Support Tool for Sustainable
and Resilient Building Design

Umberto Alibrandi and Khalid M. Mosalam

Abstract In this chapter, an integrated approach for a holistic (involving notions of
safety, resiliency and sustainability) building design is presented to select the optimal
design alternative based on multiple conflicting criteria under uncertainty. A proba-
bilistic framework of the Multi-Attribute Utility Theory (MAUT) is adopted, where
MAUT is developed in conjunction with Performance-Based Engineering (PBE)
approach, giving rise to a general framework, namely the PBE-MAUT. In
PBE-MAUTdifferent design alternativesmay be ranked based on the expected utility.
The discrepancies from the expected utility theory may be modelled through a
risk-averse modelling of the utility functions based on the individual perceptions, or a
more detailed description of the consequences valuable to the decision makers.
Moreover, a risk-averse decision-maker towards extreme events can consider suitable
quantiles or superquantiles. The distribution of the utility function is obtained from the
First Order Reliability Method (FORM) which, through the design point, gives also
themost critical realizations of the consequences for different degrees of risk aversion.
The decision-making process is dynamic, in the sense that the optimal decision
changes accordingly when new information is available. Such dynamic behavior is
effectively represented using the Bayesian analysis, here modeled by combining
PBE-MAUT with the Bayesian Network (BN). In this manner, the proposed frame-
work represents a powerful Decision Support Tool (DST) for holistic building design.
The BN, in conjunction with an array of sensors, can also be effectively used to
determine the multi-criteria optimal decision considering the building lifecycle for a
sustainable and resilient building design. The key features of the DST are demon-
strated by an application to an office located on the Create Building, in Singapore.
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1 Introduction

Holistic building design is a complex process because there are several sources of
uncertainty, the number of stakeholders is high, and the lifecycle of a building is
long. It has been recently recognized that design for resilience is to design for
sustainability to reduce the environmental impacts and societal consequences of
post-hazard repairs (Wei et al. 2016). Conversely, design for sustainability is to
design for resiliency to prevent that the unlikely extreme events may impact the
fairness inter- and intra-generational of the urban communities. Consequently, a
framework is needed for the decision-making of the most suitable holistic building
design (Bocchini et al. 2014). It is crucial to develop an integrated methodical
framework as a Decision Support Tool (DST) for the optimal decision amongst
alternatives subjected to uncertainty and incomplete information.

In a decision-making process, the first step is the choice of suitable Decision
Variables (DVs) expressed in terms of the direct interest of various stakeholders to
define the global performance of the system. Together with the DVs, the
decision-maker explores several design alternatives and/or actions through the
building lifecycle. Subsequently, making use of the DST, the optimal alternative
may be determined with general consensus from the stakeholders.

The optimal choice takes into account multiple conflicting criteria by making use
of Multi Criteria Decision-Making (MCDM) methods, such as the Multi-Attribute
Utility Theory (MAUT) (Keeney and Raiffa 1993). An important challenge of
MAUT for sustainable design stems from the different sources of uncertainty,
which in turn imply uncertainty in the decision. To this aim, the objective of this
chaper is to develop a full probabilistic formulation of MAUT, whose focus is the
definition of a DST for a sustainable and resilient building design. In this regard, the
main task is modeling the joint probability distribution of the DVs in real-world
engineering systems. We adopt the Performance-Based Engineering (PBE)
methodology, which is extensively used as a probabilistic approach for evaluating
system performance measures meaningful to various stakeholders, e.g. monetary
losses, downtime, and casualties (Pinto et al. 2012). PBE approach links in a natural
way the building design to the desired performances. For this reason, from PBE
emerge principles of resilient design and sustainable design as well. Thus, PBE
represents a simple and effective tool for holistic building design.

The joint adoption of MAUT with PBE gives rise to the extended framework
PBE-MAUT. The joint dependencies among the DVs are modeled through multi-
variate probabilistic models, e.g. the Nataf model (Liu and Der Kiureghian 1986) or
the probabilistic model of Distributions with Independent Components (DIC),
recently developed in (Alibrandi and Mosalam 2017a).

The second step in a decision-making process is the determination of the optimal
probability distribution of the DVs for different design options. In PBE-MAUT, the
final outcome is the probability distribution of the multi-attribute utility function of
each alternative, defined as a random variable U. The full distribution of the utility
function gives the most comprehensive information about the utility of the design
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alternative. To rank the alternatives, the most widely used metric in engineering is
the expected utility (Von Neumann and Morgenstern 1944). However, according to
Haimes (Haimes 2004), the expected utility does not distinguish between events of
high probabilities and low consequences and events of low probabilities and high
consequences. Actually, researchers have found that the choice of the decision
makers have some discrepancies with respect to the expected utility of the decision
variable. To this aim, some improvements of the expected utility theory have been
proposed: in (Cha and Ellingwood 2013) risk-averse utility functions based on the
individual risk perceptions are adopted, in (Gardoni et al. 2016) the Life-Cycle Cost
Analysis is developed through the Life Profitability Method, so the optimal deci-
sions are based on a more complete cost model. Several researchers have proposed
the adoption of risk measures applied to the DVs (Artzner et al. 1999; Rockafellar
2007; Rockafellar and Royset 2015). In this chapter, risk measures, e.g. expected
value, quantiles, and superquantiles, are applied to the utility variables. This for-
mulation allows to include the risk perception of the decision maker when a
complete description of the decision variable is not available.

In the literature, it is however recognized that risk-averse utility functions should
not substitute a proper modeling of the consequences, such that a rational
decision-making can be made risk-neutral with a good understanding of the con-
sequences. This is here accomplished by determining the distributions of the util-
ities through the First-Order Reliability Method (FORM), which gives a good
tradeoff between accuracy and efficiency; moreover the knowledge of the design
point allows to define significant realizations of the DVs corresponding to chosen
degrees of risk. The FORM results can effectively guide the decision-maker to
make a rational choice of the optimal design.

The approach is formulated using the Bayesian Network (BN) (Nielsen and
Jensen 2009) which is a probabilistic model that facilitate efficient graphical rep-
resentation of the dependence among random variables. An important advantage of
the BN is its capacity in predicting probabilistic updating when new information is
acquired, e.g. through a network of sensors or from observations after inspection.
Another advantage of the BN is transparent modeling, allowing its adoption by
users with limited background in probabilistic or reliability analysis. BN can also
model time-dependent uncertain parameters easily (Straub 2009; Straub and Der
Kiureghian 2010a, b). In the proposed computational framework, the Dynamic
Bayesian Networks (DBNs) are used to model stochastic processes of all the
quantities of interest, including the time-dependent utility functions. This allows a
transparent lifecycle modeling of the involved time-dependent uncertainties and a
clear description of the dynamic evolution of the optimal decision.

The proposed PBE-MAUT represents a powerful tool for an extended
multi-objective system of management and design. It involves analyses of climate,
energy, sustainability, and lifecycle cost in addition to hazard, structural, damage,
and loss included in the original PBE. After describing the main features of the
framework, PBE-MAUT is applied to an office of CREATE Building in Singapore,
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which underlines the main strengths of the proposed framework as an effective DST
for holistic building design.

2 Multi Criteria Decision-Making Under Uncertainty

2.1 MAUT

Decision-making problems involving conflicting criteria fall in the broad class of
the Multi-Criteria Decision Analysis (MCDA). In this context, a powerful tool is
given by the MAUT (Keeney and Raiffa 1993) where each alternative receives a
score through the definition of suitable overall utility functions defined in terms of
the chosen criteria. The general procedure for MAUT consists of: (i) selection and
definition of criteria and design alternatives, (ii) selection of weights, and (iii)
ranking of the alternatives through the utility functions.

In a decision-making model, the Requirements are the most general standpoints,
e.g. Functional, Social, Environmental, and Economical (San-José Lombera and
Garrucho Aprea 2010; Pons and Aguado 2012), which may be unfolded in several
Criteria or Attributes (e.g. lifecycle cost), where each criterion may involve several
Indicators or Decision Variables (DVs), e.g. energy expenditure and economic
losses. Typically, there are several criteria to consider and generally some of them
may be inevitably conflicting. The first step in the decision-making problem is to
identify from the criteria a set of n indicators (or DVs) c1, c2, . . . , cn collected in the
vector c. The next step is to define a finite set of m design alternatives, i.e.
a= a 1ð Þ a 2ð Þ . . . a mð Þ� �

. In general, each alternative i depends on all indi-
cators, i.e. a ið Þ = a ið Þ c1, c2, . . . , cnð Þ.

The alternatives in MAUT are ranked through the utility function, a
value-measuring function that converts the values of the DVs to scores representing
the degree of preference of the decision-maker within the decision model. For each

design alternative, a utility function U ið Þ =U c ið Þ
1 , c ið Þ

2 , . . . , c ið Þ
n

� �
is defined such that

the most and least beneficial options have utilities U ið Þ
max =1 and U ið Þ

min =0, respec-
tively. Other options have utility scores between these limits, which are higher
when the performance of a given alternative is better. The utility function U cð Þ is
expressed as a combination of single attribute utility functions Uj cj

� �
of only one

DV where the relative importance is defined by weights wj, 0≤wj ≤ 1, ∑n
j=1 wj =1,

of the different attributes. Several methods for assigning the weights are discussed
in (Wang et al. 2009). A simple model of aggregating the attributes is the linear
model:

U c1, c2, . . . , cnð Þ= ∑
n

j=1
wjUj cj

� � ð1Þ
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The additive rule in Eq. (1) is generally valid if the effects of the interaction
between indicators are negligible. A simple single-attribute utility function is linear
as follows:

Uj cj
� �

=
1.0 cj ≤ cj,min

cj,max − cj
� �

̸ cj,max − cj,min
� �

cj,min < cj < cj,max
0.0 cj ≥ cj,max

8<
: ð2Þ

where cj,min and cj,max are respectively the most and least beneficial values of the
indicator. The shape of the utility functions may contain information about the risk
attitude of the decision-maker (Keeney and Raiffa 1993; Winston 2003). The linear
utility is representative of a risk-neutral attitude. A concave utility function is said to
be risk-averse because it shows the tendency of the decision-maker to a conser-
vative behavior. Risk-seeking attitudes are represented by convex utility functions,
see Fig. 1.

Rational decision-makers may adopt a linear risk-neutral U considering conse-
quence models, as discussed below. In deterministic MAUT, the optimal decision

corresponds to the maximum utility, i.e. U optð Þ =U c optð Þ
1 , c optð Þ

2 , . . . , c optð Þ
n

� �
=

max U 1ð Þ,U 2ð Þ, . . . ,U mð Þ� �
.

2.2 Probabilistic MAUT

From Eq. (1), it is possible to score the design alternatives and to determine their
ranking. However, in real-world applications, the indicators cj and the elicitation of

Fig. 1 Comparison between
linear, risk-averse, and
risk-seeking single-attribute
utility functions
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the utility functions contain various sources of uncertainty. In the following, it is
assumed that only the indicators cj are uncertain and modeled through random
variables of known distributions. Thus, the utility function of the ith alternative
U ið Þ =U c ið Þ� �

is a random variable since c ið Þ is a vector of random variables and
depends on the corresponding joint Probability Density Function (PDF),
f ið Þ
c = fc c ið Þ� �

, of the indicators c ið Þ, which can be determined from the PBE
approach, as described below. Since U ið Þ is a random variable, it is completely
defined by its Cumulative Distribution Function (CDF), which can be evaluated
through the structural reliability theory by introducing a limit state function

G ξ, c ið Þ� �
=U c ið Þ� �

− ξ, where F ið Þ
U ξð Þ=Prob G ξ, c ið Þ� �

≤ 0
� 	

, i.e.

F ið Þ
U ξð Þ=Prob U c ið Þ

� �
≤ ξ

h i
=

Z

G ξ, c ið Þð Þ≤ 0f g

f ið Þ
c cð Þdc ð3Þ

The general framework of probabilistic MAUT is shown in Fig. 2.
The knowledge of the CDF fully defines the utility of the ith alternative, since its

Probability Of Exceeding (POE) P ið Þ
U ξð Þ=Prob U c ið Þ� �

≥ ξ
� 	

, is equal to the com-

plementary CDF, i.e. P ið Þ
U ξð Þ=1−F ið Þ

U ξð Þ, while the PDF may be determined as

DV Weight
c1 w1

c2 w2

Define Design Alternatives a(1), a(2),..., a(m)

Define Criteria c1, c2,...,cp

c1,L c1,U
0

1
U1(c1)

c1 c2

U2(c2)

0

1

c2,L c2,U

Define Single-Attribute Utility Functions

Assign Weights

U(c1, c2)= w1 U1(c1)+ w2 U2(c2)

Define Multi-Attribute Utility Functions
Build joint PDF of the DV

Alternative a(2)Alternative a(1)

MCSMCS

Build POE of U(i)(c)

MCS: Monte Carlo Simulation

Build joint PDF of the DV

Fig. 2 Schematic of the probabilistic MAUT
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f ið Þ
U ξð Þ= ∂F ið Þ

U ∂̸ξ. To rank the alternatives, a metric is necessary, where several
measures can be determined from the POE (Rockafellar and Royset 2015; Haukaas
2013). A well-founded measure to rank the alternatives is the expected utility (Von
Neumann and Morgenstern 1944), coinciding with the expected value of the utility
variables U ið Þ:

U ið Þ =E U c ið Þ
� �h i

=
Z

ξ f ið Þ
U ξð Þdξ=

Z
U ið Þ cð Þ f ið Þ

c cð Þdc ð4Þ

2.3 Expected Utility and Risk Measures for a Single
Criterion

The expected utility, Eq. (4), is a commonly used metric in decision theory.
However, some violations of the axiomatic basis of the expected utility model are
well-documented (Ditlevsen 2003; Maes and Faber 2007). The expected utility
presumes that the decision-maker behaves rationally. However, the concept of
human rationality may not be valid in high-uncertainty situations. The prospect
theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992) is an alter-
native to the expected utility theory, and it has been applied to study the risk
averseness in engineering applications (Cha and Ellingwood 2012, 2013). Different
from expected utility theory, in the prospect theory, the risk perception is incor-
porated into the formulation of the utility functions. However, in literature it is
recognized that a proper modeling of the consequences through an accurate prob-
abilistic model should not be substituted by a risk-averse decision model. This is the
approach followed in (Gardoni et al. 2016) where the expected lifecycle cost is
described through a more complete financial information.

Assume that two different alternatives c 1ð Þ and c 2ð Þ for a given criterion c are

given by the PDFs f 1ð Þ
C cð Þ and f 2ð Þ

C cð Þ, respectively. The distribution f 1ð Þ
C cð Þ is

lognormal with parameters μ= − ln 2ð Þ 2̸ and σ2 = ln 2ð Þ, i.e. with mean E C 1ð Þ� 	
=1

and variance Var C 1ð Þ� 	
=1. The distribution f 2ð Þ

C cð Þ is a Kernel Density from a
superposition of three lognormal distributions (Alibrandi and Ricciardi 2008),

f ð2ÞC cð Þ= ∑3
i=1 pif

LN
i c; ci, hð Þ with centers c1 = 0.5, c2 = 0.8 and c3 = 4, bandwidth

h=1 5̸, and weights p1 = 0.9, p2 = 0 and p3 = 0.1. Thus, the mean and variance of
this alternative are E C 2ð Þ� 	

=4 5̸ and Var C 2ð Þ� 	
=1, respectively. The two distri-

butions are presented in Fig. 3.
Assume the criterion c is the total cost (initial construction + lifecycle) of a

building. The rationale behind the expected value of the utility is maximizing the
resources over the lifecycle time amongst many decisions. A design with the smallest
average cost would be best on average. Since E C 2ð Þ� 	

<E C 1ð Þ� 	
, the second design

alternative is preferred. However, from Fig. 3a, it is seen that the first alternative is
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safer with respect to high-consequence events. Suppose the decision-maker cannot
afford some socio-economic costs above the threshold c≥ 3.5, then the
decision-maker would be inclined to choose the first design alternative. Moreover, in
the context of sustainability, the criterion could not be the economic cost only, but
also environmental responsibility, then the decision-maker may want to avoid the
second alternative where an unlikely event with high consequences may occur.

If an accurate modeling of the consequences is developed and described by the
PDFs of the cost of the two alternatives, a linear utility function, Eq. (2), may be
adopted, i.e. U cð Þ= cmax − cð Þ c̸max. It is noted that the utility function is described
as a random variable U =U cð Þ subjected to the preference of the decision-maker
and the randomness of the uncertain criterion. These two issues are well-defined
and kept distinct by the functional relationship given by U and distribution fC cð Þ.
Accordingly, the distribution of the utility incorporates the randomness of the
criterion and the risk aversion of the decision-maker, i.e. fU uð Þ= fC cð Þ ̸ J cð Þj j where
J cð Þ= dU d̸c is the Jacobian of the transformation. The distribution of the utilities
for this example are shown in Fig. 3b. Assuming cmax =6, the expected utility for

the two alternatives is U 1ð Þ =0.839 and U 2ð Þ =0.867. Thus, a decision-maker fol-
lowing the expected utility theory would state that the best alternative is the second.
It is noted that, in presence of a linear utility function, the minimization of the
expected cost is equivalent to the maximization of the expected utility.

Suppose that the decision-maker implements his/her risk-aversion through a
nonlinear utility function, e.g. U cð Þ=1− c c̸maxð Þγ where U 0ð Þ=1, U cmaxð Þ=0,
while γ gives the degree of risk-aversion. Figure 3a represents the nonlinear utility
functions for different values of γ and Fig. 4b shows the corresponding expected
utilities of the two alternatives.

The application of the expected utility theory determines the second alternative
as the optimal one. Moreover, an increase in the degree of risk-averseness increases
the preference of the second alternative. The example shows that in some cases the
adoption of risk-averse functions may give misleading results. Conversely, as

Fig. 3 Distributions corresponding to two alternatives for a chosen criterion. a PDF of the
alternatives, b PDF of the utilities
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suggested in (Gardoni et al. 2016), a complete model of the consequences with
risk-neutral attitude should be applied, when available. In such cases, to take into
account the risk-aversion towards the extreme events, risk measures may be
adopted to the utility. Largely adopted risk measures are α-quantile
ξ≡ qU αð Þ=F − 1

U αð Þ, refer to Eq. (3), or α-superquantile, an expected conditional
value of the random variable u, i.e.

qU αð Þ=E Uj0≤ u≤ ξ½ �=
R ξ
0 ξ

′fU ξ′
� �

dξ′R ξ
0 fU ξ′

� �
dξ′

=
1
α

Z α

0
qU α′ð Þdα′ ð5Þ

The superquantile is an average of quantiles for probability levels 0< α′< α,
Fig. 5.

Note that for α=1, qU 1ð Þ=U, while the left tail of fU uð Þ (corresponding to
extreme events with low utility) is defined for low values of α. Thus, the
superquantile may describe all properties of the whole distribution. Moreover, it has
useful mathematical properties, like coherency and regularity. In this example,

Fig. 4 Decision-making of the two alternatives in Fig. 3a considering risk-aversion. a Nonlinear
utility function for different degrees of risk-averseness, b corresponding expected utilities

Fig. 5 Schematic of the superquantile
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the expected utility is obtained from Eq. (5) for α=1, i.e. q 1ð Þ
U 1ð Þ≡U 1ð Þ =0.839

and q 2ð Þ
U 1ð Þ≡U 2ð Þ =0.867. On the other hand, the risk towards extreme events may

be considered by choosing α=0.10 in Eq. (5) to give q 1ð Þ
U 0.10ð Þ=0.514>

q 2ð Þ
U 0.10ð Þ=0.409, and the first alternative is preferred.

2.4 Decision Analysis Using Target

This link between utilities and probabilities is well recognized in literature. The
expected utility model itself can be entirely reformulated in the context of proba-
bility (Castagnoli and Li Calzi 1996; Bordley and LiCalzi 2000). The expected
utility is a linear functional over the probability distribution associated with an
alternative/decision where U cð Þ is bounded and monotonic and possesses all the
properties of a CDF if U cð Þ is increasing or POE if U cð Þ is decreasing. Conse-
quently, the utility function can be interpreted as a probability distribution of an
uncertain target T stochastically independent from the alternatives. In engineering
problems, most criteria have decreasing utility functions, so U cð Þ represents the
POE of the target:

U cð Þ=Prob T > c½ �=1−FT cð Þ ð6Þ

where FT cð Þ=Prob T ≤ c½ �. It is noted that the expected utility can be defined as a
classical reliability problem:

U
ið Þ = ∫ U cð Þ f ið Þ

C cð Þdc=
Z

Prob T ≥ c′
� 	

f ið Þ
C c′
� �

dc′ =Prob T ≥ c ið Þ
h i

=
Z

c ið Þ − T ≤ 0f g
fT τð Þf ið Þ

C cð Þdτdc
ð7Þ

where fT τð Þ is the PDF of the uncertain target expressing the modeling of the
uncertainty of the decision-maker about his target. The concept of utility function
can then be replaced by the notion of target, which is easier to understand.
Moreover, the target-based model allows to easily describe some known risk-averse
nonlinear utility functions. For example, Fig. 6 shows the linear utility function
described as a target uniformly distributed over the consequences between cmin =0
and cmax =6. In (Cha and Ellingwood 2013) the risk perception of the losses is
modelled through some risk-averse utility functions. It is easy to check that they
correspond to a target with exponential distributions presented in Fig. 7. As
expected, these PDFs give greater weight to the highest consequences as a function
of the parameter γ >0 representing the degree of risk aversion.

In Eq. (7), the model uncertainties related to the utility function(s) can be
addressed as parameter uncertainties of the distributions modeling the target(s).
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Assume that the decision-maker has a target T between two bounds, cmin and cmax.
According to the principle of Maximum Entropy, the least biased distribution with
the given information is the uniform. This shows that in absence of further infor-
mation, a rational decision-maker is risk-neutral. Moreover, the application of the
MaxEnt principle may be adopted to determine utility values when only partial
information is available about the decision maker’s preferences. Consequently,
updating subjective utilities through Bayesian analysis can be advantageous and
straightforward.

3 Evaluation of the Distribution of the Utility Functions

The multi-attribute utility function U ið Þ =U c ið Þ� �
is a function of random variables,

which also makes it a random variable itself. Our focus herein is on a multi-criteria
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Fig. 6 Linear utility expressed through the target. a PDF, b POE
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Fig. 7 Risk-averse utility function expressed through the target. a PDF, b POE
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decision-making, such that U ið Þ takes into account several joint criteria, typically
conflicting, and whose consequences (direct and indirect) can go beyond economic
issues. However, in Eq. (1) the contributions of several criteria are combined into a
single random variable, while for a rational decision it would be useful to know the
values of the most critical realization of the decision variables, for a chosen degree
of risk-aversion. This can be obtained by applying the FORM to U ið Þ, as described
below. The evaluation of the distribution of the utilities, Eq. (3), can be performed
using structural reliability theory. The most robust procedure for this purpose is the
Monte Carlo Simulation (MCS) (Ditlevsen and Madsen 1996; Melchers 1999),
which is however computationally demanding.

A good tradeoff between accuracy and efficiency is provided by the FORM.
After probabilistic transformation towards the standard normal space u, Eq. (3)
becomes:

F ið Þ
U ξð Þ=Prob U ið Þ uð Þ≤ ξ

h i
=

Z

gi ξ, uð Þ≤ 0f g

φn uð Þ du ð8Þ

where φn uð Þ is n variate PDF of the normal standard distribution, while
gi ξ, uð Þ=U ið Þ uð Þ− ξ is the limit state function in the normal standard space cor-
responding to the ith alternative. The design point u*i ξð Þ is the most likely real-
ization of the random variables giving rise to the event gi ξ, uð Þ≤ 0½ �≡ U ið Þ uð Þ≤ ξ

� 	
,

i.e. the point closest to the origin of the standard normal space of the limit state
surface gi ξ, uð Þ=0 and obtained as the solution of an optimization problem:

u*i ξð Þ= argmin uk k: gi ξ, uð Þ=0f g ð9Þ

The reliability index is defined as the distance to the design point from the origin
of the standard normal space βi ξð Þ= u*i ξð Þ

 

. Thus, FORM gives an approximation

of the distribution F ið Þ
U ξð Þ=Φ − βi ξð Þ½ �, where Φ is CDF of the normal standard

distribution, to that defined by Eq. (3) and it is accurate enough for most cases of
practical interest. If this is not the case, the recently proposed Secant Hyperplane
Method (Alibrandi et al. 2016; Alibrandi and Mosalam 2017b) can be used.

Typically, a decision-maker desires to choose the best alternative having some
information about the consequences of the choices. This may be obtained easily by
noting that

βi ξð Þ=Φ− 1 1−F ið Þ
U ξð Þ

h i
=Φ− 1 1− αð Þ ð10Þ

Through an algorithm of inverse reliability (Der Kiureghian et al. 1994) for a
chosen β= β0, corresponding to probability α0 =Φ − β0ð Þ of the distribution of the

utility function, the threshold ξ ið Þ
0 of U ið Þ is determined such that βi ξ ið Þ

0

� �
= β0. Once

ξ ið Þ
0 is evaluated, the corresponding limit state function gi ξ ið Þ

0 , u
� �

=U ið Þ uð Þ− ξ ið Þ
0 is
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defined, and the design point u*0i = u*i ξ ið Þ
0

� �
together with its mapping in the

original space c*0i = c*i ξ ið Þ
0

� �
are found. Thus, each alternative is defined by a single

deterministic value c*0i for chosen quantile. The alternatives can also be ranked
through a deterministic MAUT by applying Eq. (1) to the design points, i.e.
U ið Þ =U c*0i

� �
.

The application of the classical MAUT to the design points corresponding to
different quantiles allows to choose not only the best design alternative, but also
gives information for the most critical realization of the indicators for different
degrees of risk. In this way, the decision-maker can select, consciously, the best
alternative, taking into account all consequences of all scenarios, including the
worst ones. A detailed numerical application is presented in (Mosalam et al. 2016)

4 Joint Distribution of the Uncertain Parameters

A key point in the determination of the distributions of the utility functions is
represented by the evaluation from the joint PDF f ið Þ

c cð Þ of the indicators, Eq. (3). It
is underlined that especially the tails of the utility functions are sensitive to the
distributions of the input parameters c1, c2, . . . , cn, which therefore have to be
modeled as accurately as possible, given the available information. In most cases,
the criteria derive from p basic random variables x1, x2, . . . , xp, i.e. cj =
cj x1, x2, . . . , xp
� �

. In some cases, the decision variables may coincide with the basic
variables (e.g. c1 ≡ x1, c2 ≡ x2, . . .), but, in general, it is expected that they differ.
This implies that the utility functions are a function of the basic variables
U ið Þ =U c x ið Þ� �� 	

=U x ið Þ� �
. The relationships from the basic variables x ið Þ to the

DVs c ið Þ may be determined through the classical PBE approach, or the unified
reliability framework, below described.

4.1 PBE Approach

The Pacific Earthquake Engineering Research (PEER) Center developed a robust
PBE methodology focused on earthquake engineering (PBEE), which is based on
explicit determination of system performance measures meaningful to various
stakeholders such as monetary losses, downtime, and casualties based on proba-
bilistic assessment (Günay and Mosalam 2013). The PEER PBEE methodology
consists of four successive analyses: hazard, structural, damage, and loss. The
methodology focuses on the probabilistic calculation of meaningful system per-
formance measures considering the involved uncertainties in an integrated manner.
PBE can be one of the solutions to estimate the performance corresponding to each
DV, not only structural losses, but also other criteria such as construction and
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maintenance costs, CO2 emission during the construction and operation phases, and
energy expenditure.

The distributions of the DVs can be estimated by adopting a novel extension of
the PBE methodology considering the energy efficiency and sustainability in
addition to structural safety (Gunay and Mosalam 2012). Accordingly, structural
safety, environmental responsibility, and human comfort constitute the objectives of
an extended multi-objective framework where analyses involving climate, energy,
sustainability, and lifecycle cost are included in addition to the hazard, structural,
damage, and loss analyses of the original PBEE method.

The adoption of the PBE methodology (Cornell and Krawinkler 2000) has
several advantages: (i) it is based on the total probability theorem, which requires
elementary knowledge of probabilistic concepts and thus easily adopted and
interpreted in practice, (ii) it is already applied for the evaluation of the safety of the
structures subjected to seismic hazard by practicing engineers, the extension to
different hazards and DVs is straightforward, and (iii) the different stages of the
analysis can be performed by separate groups of multi-disciplinary researchers.

4.2 Unified Reliability Approach

The PBE approach can also be defined through a unified reliability approach
(Haukaas 2008) where the input quantities are directly modeled through random
variables and stochastic processes using p basic random variables x1, x2, . . . , xp
collected in vector x. The decision variables c1, c2, . . . , cn expressing resiliency and
sustainability decision criteria in such case are expressed directly in terms of x. In
the most general case the input quantities may be defined in terms of stochastic
processes or random fields

X t, r, xð Þ= s0 t, rð Þx0 + ∑
k
sck t, rð Þxck + ssk t, rð Þxsk = s t, rð Þ ⋅ x ð11Þ

where x is a vector of basic random variables, r= x y zf gT is a vector defining
the spatial location, while s t, rð Þ is a vector of suitable deterministic shape func-
tions. In the case of Gaussian processes, typically x represents a vector of normal
standard random variables. Through calls to a solver used as a black-box, the DVs
may be defined as stochastic processes

DVj t, r, xð Þ= aj, 0 t, rð Þx0 + ∑
k
acj, k t, rð Þxck + asj, k t, rð Þxsk = aj t, rð Þ ⋅ x ð12Þ

If PBE-MAUT is developed through the unified reliability approach, all prob-
abilistic models for each alternative are unified into one reliability analysis
(Haukaas 2008; Alibrandi and Mosalam 2015a). It allows explicit account of all
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uncertainties, e.g. those in material properties or epistemic ones, and to model all
the quantities of interest as stochastic processes or random fields.

4.3 Probability Distributions

If only a small size of data is available, the marginal distributions can be modeled
using known parametric distribution, e.g. Normal, Lognormal, or Weibull, with
parameters determined through the “method of the moments” or “method of
maximum likelihood”. A statistical test to accept or reject the probability model is
usually adopted. However, for an assigned physical quantity, in presence of a small
size of data, it is not possible to statistically justify a specific single distribution. An
effective tool for this purpose is represented by the “method of the maximum
entropy” (Jaynes 1957; Kapur and Kesavan 1992) giving the least biased distri-
bution with respect to the available information. In this regard, a kernel density
estimation based on the maximum entropy principle, which adopts generalized
moments including power and fractional ones, is recently proposed in (Alibrandi
and Mosalam 2017c). The method, called GKDMEM, may be considered an
effective approach for evaluating the optimal distributions of the criteria
c1, c2, . . . , cn, and can also elicit the utility functions in terms of preferences of the
decision-maker.

In some cases, the scarcity of data may prevent the definition of a reliable
probability distribution, in terms of PDF and/or its parameters. In such cases,
suitable distributions based on engineering judgment and/or expert opinion may be
adopted. If new information becomes available, it will be used to update the
probability distributions of the uncertainties through Bayes’ updating rule. Know-
ing the marginal distributions of the DVs and their correlations, the modeling of the
joint dependencies can be effectively developed by the Nataf model (Liu and Der
Kiureghian 1986). It is noted that if in the decision-making model the focus is about
the modeling of joint extreme events, the approximation given by Nataf could be
inadequate. In such cases, one can adopt DIC, a multivariate probabilistic model
developed in (Alibrandi and Mosalam 2016)

5 Bayesian Networks for Sustainable and Resilient
Building Design

The BNs are graphical probabilistic models that facilitate efficient representation of
the dependence among random variables. They are based on the Bayes’ rule and the
Bayesian inference, such that the network is updated in real-time when new
information (e.g. from a network of sensors) is acquired. BNs can also be effec-
tively used in “what-if” analyses, i.e. to analyze the behavior of the system if a
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given event should occur. The BNs have a transparent modeling, and they can be
adopted by users with limited background in probabilistic or reliability analysis.

Following (Straub and Der Kiureghian 2010a, b) the BNs are combined with
structural reliability methods, where the conditional probabilities are given by the
methods of the structural reliability theory. The Influence Diagram is a BN with the
addition of decision and utility nodes, where the optimal alternative is based on the
principle of maximum expected utility (Von Neumann and Morgenstern 1944).
This approach has been recently followed in (Bensi et al. 2009) for post-earthquake
risk-assessment. Here, the BNs are applied to the evaluation of sustainable and
resilient building design. Moreover, following the general framework of
PBE-MAUT, the distribution of the utility functions is directly modeled as a node
of the BN, while the metric (e.g. expected utility, quantiles or superquantiles) is
determined as a derived quantity. In the proposed framework, starting from the
design criteria and alternatives chosen in PBE-MAUT, the BN model is con-
structed, where all the conditional probabilities are determined through the com-
putational tools of structural reliability. The distributions of the utility functions are
updated in real-time when new information over the uncertain parameters is
available, or when a specific alternative is chosen.

Figure 8 shows that the classical PBEE approach (where the input is the seismic
hazard) can be incorporated inside PBE-MAUT and analyzed by the BN modeling.
Here, four DVs have been chosen: c1 ≡ Loss L, c2 ≡ Fatalities (Fat), c3 ≡
Downtime (Dt), and c4 ≡ Injuries (In) with the utility function expressed as
U =U c1, c2, c3, c4ð Þ. The links from PR ≡ Price Rate, DM ≡ Damage Measure,
and C ≡ Collapse to L ≡ Loss indicate that the distribution of L is conditioned on
PR, DM, and C. In the BN terminology, L is a child of PR, DM, and C, which are
the parents of L. BN has the assumption of conditional independence, i.e. any node
depends only on its parent node and it is conditionally independent of any unlinked
nodes. Figure 8 also shows the node Um giving a superquantile of the utility.

For sustainability, the corresponding BN is shown in Fig. 9, where CV is the
Climate Variable, EM is the Energy Measure, while two DVs have been chosen:
c1 ≡CO2 and c2 ≡EE, while U =U c1, c2ð Þ. Figure 10 shows the integrated model
taking into account seismic risk and sustainability. It is noted that the DM affects
both seismic loss L as well as CO2 because of post-seismic repair.

The procedure may be extended to multiple hazards and sustainability criteria. An
example is shown in Fig. 11 where the structural safety is detected through the
criteria c1 ≡ Loss L and c2 ≡ Injuries/Fatalities. It is assumed that the system may
be subjected to three different potential natural hazards: Earthquake, Flood, and
Haze. Two different failure modes are assumed and it is conjectured that the second
failure mode can trigger the fire hazard. Further decision criteria may be: human
comfort in the facility, energy efficiency (expressed through the Energy Expenditure
EE) and the environmental responsibility (expressed through CO2 emission).

The BN can also manage lifecycle analyses easily. For example, the
time-dependent cost due to damage and its corresponding utility function for dif-
ferent alternatives and scenarios can be determined (Alibrandi and Mosalam
2015b). Accordingly, it is possible to determine the optimal decision after t years.
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This implies that holistic design, including resiliency and sustainability, may be
well managed by the proposed framework. The resiliency may be defined in terms
of the functionality Q tð Þ (Bocchini et al. 2014; Bruneau et al. 2003)

RL =
Z tr

t0
100−Q tð Þ½ �dt ð13Þ

where RL is loss of resilience experience by the system, t0 is the instant when the
extreme event occurs, t0 is the time instant when the fully functionality is restored,
see also Fig. 12.

In the BN model of Fig. 13, the lifecycle holistic analysis of a system subjected
to a hazard can be analyzed. The DVs are the Construction Cost c1 ≡CC, the
Economic Losses c2 tð Þ≡ L tð Þ, the environmental impact represented by CO2

emission, i.e c3 tð Þ≡CO2 tð Þ, and the functionality of the system c4 tð Þ≡Q tð Þ. This
model can analyze several stochastic processes, including the Damage Measure
DM tð Þ, and the utility function U tð Þ. The model can incorporate the degradation of
the material. Moreover, it is assumed that, at each year, the decision-maker can
choose to develop a plan of maintenance and repair. This will affect not only the
economic losses L tð Þ, but also the sustainability CO2 tð Þ because of the carbon

Fig. 10 BN for integrated framework including seismic risk and sustainability
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emission due to post-hazard repair, and the resilience through the functionality
Q tð Þ. The example shows the strict relationships between sustainability and resi-
lience. The lifecycle actions of the decision-maker will affect the results of the
utility function after t years, and accordingly the optimal decision. The conditional
probabilities of the BN model may be defined through the classical PBE method-
ology or through the tools of stochastic dynamic analysis. For the evaluation of the

EQ

Failure
Mode 1

Losses CO2

Climate

Energy
Measure

U

Um

Flood Haze

Injuries/
Fatalities

Fire

Human
Comfort

Energy
Expenditure

Failure
Mode 2

Fig. 11 BN for integrated framework including sustainability and multiple hazards

Fig. 12 Loss of resiliency
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distributions, including their tails, statistical methods based on the Maximum
Entropy principle (Jaynes 1957; Kapur and Kesavan 1992; Alibrandi and Mosalam
2016) or stochastic equivalent linearization methods (Alibrandi and Mosalam 2016;
Fujimura and Der Kiureghian 2007; Garrè and Der Kiureghian 2010; Alibrandi and
Koh 2017) may be adopted because of their effective computational cost.

Moreover, the BN can easily manage Bayesian updating, refer to Fig. 14.
Through a network of sensors, information in real time about Energy Consumption
EC is determined. The Bayesian updating may be developed also over the shape of
the utility function(s) (represented in figure by the risk-aversion parameter γ) and
the weights of the alternatives. This feature is attractive since there is an increasing
interest in smart cities connecting human, physical and cyber elements. This can be
achieved transparently using a BN-based unified framework.

It has been underlined that a significant source of uncertainty is related to the
utility function, which is defined through subjective utilities expressing the pref-
erences of the decision-maker. Moreover, the utilities can be modeled as probability
distributions of subjective preferences of the decision-maker. Consequently, in a
sustainable building design, the decision-maker can update, using Bayes’ rule
and/or MaxEnt method, not only objective probabilities related to experimental data
but also subjective utilities together with their weights. This is very important
especially in modern society, where technological innovation and novel challenges
may change the analysis of the consequences day by day. It is difficult for a
decision-maker to describe utility functions capturing food shortage as a result of
drought, pollution or an extreme event (e.g. failure of a nuclear power plant near the
ocean) if no one has previously studied this phenomenon. Therefore, it is believed

Fig. 13 BN for lifecycle holistic analysis
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that the Bayesian updating of the utility and weights is important for the
decision-making process and it can be managed in a straightforward manner using
the BNs.

6 Lifecycle Sustainability Analysis of Sinberbest Office
Space in the Create Building, Singapore

As an example, a sustainability lifecycle analysis is considered for an office space
located in the SinBerBEST of the 11th floor of the CREATE Building, Singapore,
shown in Fig. 15.

6.1 Decision Criteria

In the SinBerBEST (Singapore Berkeley Building Efficiency and Sustainability in
the Tropics) office, economic and environmental requirements are considered for
the lifecycle analysis. We consider as indicators c1 ≡CO2 emission, the Energy

Fig. 14 BN for sustainability under Bayesian updating
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Expenditure c2 ≡EE, and c3 ≡ IC is the Initial Cost of the adopted energy systems.
It is assumed that the weights chosen by the decision-maker for these criteria are
w1 ≡wCO2 = 0.4, w2 ≡wEE =0.35, and w3 ≡wIC =0.25. This implies that the
decision-maker prefers to maximize the energy efficiency and the environmental
sustainability during the lifecycle.

Fig. 15 Office at CREATE building, 11th floor
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Fig. 16 BN model of the lifecycle sustainable design of the SinBerBEST office
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6.2 Definition of the Alternatives and BN Model
for Lifecycle Analysis

Two different energy plans have been considered as alternative sustainability
designs, namely “Plan 1: Electricity + PV panels” and “Plan 2: Electricity only”,
where PV stands for Photo Voltaic. The two alternatives are studied through a
lifecycle analysis developed through the BN model in Fig. 16.

6.3 PBE-MAUT

In the lifecycle analysis, all the criteria, including the Energy Consumption EC(t),
are modeled through stochastic processes. This because the EC varies during the
hours of the day, as well as in the different days of the year. The data are collected
from the Process Information (PI) system, which is a real-time data application with
a highly efficient time-series database developed by OSIsoft. Currently, only the
data of nine months of 2015 are available, Fig. 17. It is assumed that the proba-
bilistic modeling of EC tð Þ is representative of each year during the lifecycle
analysis. The PI system is coupled with the developed software for the Decision
Support Tool (DST). This implies that when new information is available, the
probabilistic modeling of EC tð Þ is updated in real-time together with the BN model
underlying the decision-making process. In the analysis it is assumed that the
parameters of the distribution are deterministic, but they are updated when new
information is available from the PI system. In Fig. 18 the distributions of EC tð Þ
after collecting data for one month (August 2015) and nine months (from August
2015 to April 2016) are shown.

It is assumed that the PV panels necessary to cover the energy consumption have
a cost of 2,110 $S and a lifecycle of 25 years. The lifecycle of the office is assumed
equal to 50 years.

Fig. 17 Energy consumption in the SinBerBEST office during (a) typical month and (b) the year
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For the PBE-MAUT, the linear single-attribute utility functions, Eq. (2), have
been used. For UCO2 t, co2ð Þ, UEE t, eeð Þ, and UIC t, icð Þ, the maximum and minimum
utility are achieved for co2,min =0 ton, eemin = icmin =0 $S and co2,max =80 ton,
eemax =25, 000 $S, and icmax =5, 000 $S.

Fig. 18 Distribution of daily energy consumption in SinBerBEST office, data collected after one
(August 2015) and nine months: a PDF and b CDF

Fig. 19 Expected values of the criteria, collecting data for m = 1 and m = 9 months: a CO2,
b EE, c CC, and d utility functions
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In Fig. 19, the expected values of the criteria and the expected utilities are
presented. It is shown that during the lifecycle, as expected, the hybrid system
“Electricity+PV panels” is more effective in terms of CO2 tð Þ emissions and EE tð Þ.
However, after 25 years, the replacement of the PV panels implies a utility
reduction due to the installation cost. Also, the figures clearly show that when new
data are available the optimal decision is updated in real time. An advantage of the
proposed approach is that the time-dependent distributions of the utility functions
can be determined; this allows to determine any needed metric, and not only the
expected utility. In Fig. 20, we represent the utility functions at t1 = 10 years and
t2 = 16 years. It is shown that a change in the optimum alternative is realized in this
short time window.

7 Concluding Remarks

For sustainable and resilient building design, the evaluation of the best decision is
challenging because the number of stakeholders is large, there are several sources of
uncertainty in the construction process, and the lifecycle of a building is long. Only
a holistic approach, which considers all the current and future components, typi-
cally conflicting with each other, can identify a suitable decision. To achieve this
holistic objective, an effective tool, termed PBE-MAUT, is presented. This tool is
an extended framework which integrates the Multi Attribute Utility Theory
(MAUT) with the Performance-Based Engineering (PBE) approach and methods of
reliability theory.

In the developed framework, the quantification of uncertainties can be achieved
through the classical PBE approach based on the evaluation of conditional proba-
bilities or the unified reliability approach. The application of FORM to the utility

Fig. 20 Utility distribution of the two alternatives at a t = 10 years and b t = 16 years
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functions allows to obtaining information for the most critical realizations of the
indicators, which gives the decision-maker a closer insight toward the direct and
follow-up consequences of the design alternatives and/or actions during the life-
cycle. PBE-MAUT can be described within the broad framework of the BN models,
which conveniently allow the lifecycle analysis of a system, including the modeling
of the degradation of the materials, as well as analysis of the consequences for
strategies of maintenance and repair. The proposed Decision Support Tool
(DST) has a very broad range of applications. For example, it can be applied for
lifecycle analysis of a sustainable and resilient system under multiple natural
hazards with comprehensive consideration of uncertainties, or to check different
sustainable technologies (Muin et al. 2015), e.g. façade system for given climate
conditions. The proposed DST can represent the main engine of a Holistic Design
Platform (HDP) under uncertainty integrating several tasks of the construction
process, e.g. structural and architectural design, performance building simulation,
construction management, etc. It is of interest to observe that the HDP allows,
through a unified framework, the integration of physical, cyber, and human ele-
ments to produce a smart building. For this reason, it can have significant impli-
cations for the development of smart cities and interdependent infrastructural
systems, where issues of sustainability and resilience are of great importance. To
this aim, ongoing research is devoted to the integration of the DST with the game
theory and agent based modelling.
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Innovative Derivatives to Drive Investment
in Earthquake Protection Technologies

Yuji Takahashi

Abstract We propose derivatives that compensate for the preparation cost to a
building owner unless a specified earthquake occurs. By purchasing the derivatives,
the building owner should pay for the earthquake protection only when the specified
earthquake occurs. Otherwise the additional preparation cost will be covered by the
derivative counterparty. In exchange for the coverage, the building owner is required
to deposit a principal, which is lost when the earthquake happens. The proposed
derivatives are expected to result in the efficient promotion of earthquake protection
technologies in seismic regions. This chapter presents a scheme to swap the cash
flow with a regular catastrophe bond. The price of the proposed derivatives is the
ratio of the notional amount to the compensation given the earthquake does not take
place. The pricing is formulated based on credit default swap (CDS) pricing. We
present a numerical example using an actual cat bond, where up-to-date seismo-
logical models are introduced into pricing.

Keywords Earthquake protection ⋅ Derivatives ⋅ Cat bond ⋅ CDS pricing ⋅
Seismological model

1 Introduction

Large earthquakes have been causing serious economic damages and killing many
people in seismically active regions. About 10% of all earthquakes over the world
occur in Japan, while the country occupies only 0.3% in terms of land area (NLIORJ
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2003). The latest catastrophe event was the Kobe earthquake in 1995, which results
in 6,435 fatalities and economic loss of about $ 100 billion (estimated by the Cabinet
office of Japan: COJ). Also after that, several damaging earthquakes, e.g., the
Northern Miyagi earthquake in 2003, the Niigata Chuetsu earthquake in 2004, and
the Fukuoka western off-shore earthquake in 2005, entailed significant damages.

The San Francisco Bay Region is also at high risk. Earthquakes are forecasted by
the US Geological Survey, (USGS 2003), and by the Headquarters for Earthquake
Research Promotion (HERP 2005) which provides government forecasted earth-
quakes in Japan, in both cases based on cutting-edge seismological models. HERP
(2005) identified more than three hundred seismic sources and evaluated their
location, magnitude and probabilities, some major ones of which are listed in
Table 1. By comparing to San Francisco Bay Region (USGS 2003), larger earth-
quakes are forecasted to happen in greater probabilities.

The COJ organized a working group to estimate future economic losses and the
numbers of fatalities incurred by the major earthquakes, which are also shown in
Table 1. The Tokai, Tonankai, and Nankai earthquakes are expected to have large
magnitude and cover a large portion in geographically-central part of Japan. It is
notable that the monetary loss for the South Kanto earthquake is larger than those
for the Tokai, Tonankai, and Nankai earthquakes despite its magnitude is smaller
(7.2). This is because the South Kanto earthquake is considered to take place just
beneath the Tokyo region, which is the most urbanized area involving huge
potential exposure. No matter which earthquake happens, the losses are significant
relative to Japan’s CDP of about $4.5 trillion and population of about 120 million.

In order to prepare for catastrophe events, physical technologies have been
developed by structural engineers. Not only traditional strengthening, but also more
advanced technologies such as vibration energy-dissipation dampers and base
isolation systems are demonstrated to mitigate earthquake damages on buildings.
Now these technologies are fully commercialized, and building owners seem to
perceive them to be effective in protecting their properties and lives.

However, in reality, the penetration of protection technologies is very slow even
in the seismic regions where building owners consider their earthquake risks. The
government and earthquake researchers started to investigate and list some reasons
why people do not employ such excellent protection technologies. One of them is
the construction cost, which is approximately estimated to be additional 2–10% for
new buildings and 5–30% for existing ones.

Table 1 Earthquake probability and estimated loss (HERP 2005 and COJ)

Name Magnitude 30- year
probability

Economic loss
($ billion)

# of fatalities

Kobe (reference) 7.3 Occurred in 1995 100 6,435
South Kanto 7.2 72% 1,120 11,000
Tokai 8.0 86% 370 9,200
Tonankai 8.1 60% 570 17,800
Nankai 8.4 50%

538 Y. Takahashi



Takahashi (2006) pointed out that many building owners do not invest in the
protection, even though they well understand their effectiveness, because they think
“the investment should be successful if earthquake hits me in the future. But waste
of money if there is not earthquake”. This means that the building owners who
invested in protections must expose themselves to the “risk that earthquake does not
occur”. Indeed the investment will be a sunk cost unless the protection gets no
opportunity to work.

So as to solve the above problem, Takahashi (2006) proposed derivatives that
pay when pre-specified earthquakes do not occur. This study demonstrated that the
security is formed by swapping the payoff with that of regular earthquake deriva-
tives, which pay in case of earthquake occurrences. The derivatives were priced
based on insurance mathematics. From practical viewpoints, however, the proposed
derivatives should have maturity of 5 to 30 years while regular earthquake
derivatives are annual contracts. This inconsistency is problematic because the
originator must maintain the sales quantity of regular earthquake derivatives in
order to balance the cash flow for both sides.

This study proposes a new scheme utilizing a cat (catastrophe) bond to balance
the cash flows from both entities over time. Normally the maturities of cat bonds
range from 1 to 10 years (MMC Securities 2007), which matches that of the pro-
posed derivatives. Section 2 describes the basic scheme of the new product.
Section 3 presents pricing formulas, and Sect. 4 shows a numerical example using a
cat bond actually issued in Japan in 1997 (Misani 1999).

2 Basic Scheme

This chapter proposes derivatives that continue to pay coupons, which compensate
for the additional cost for protection, to a building owner until a pre-specified
earthquake occurs (if any) or maturity. This security is realized by combining the
default leg (or insurer leg) of a cat bond because their payoffs are opposite and can
be swapped. Section 2.1 overviews conventional cat bonds, and Sects. 2.2 and 2.3
presents the basic scheme and price of the newly proposed derivatives, respectively.

2.1 General View of Regular Cat Bond

Many references about cat bond are available, e.g., Geman (1999), Misani (1999),
Swiss Re (2003), and GAO (2003). A cat bond is an Alternative Risk Transfer
(ART) instrument, which uses techniques other than traditional insurance and
reinsurance to provide risk bearing entities with coverage or protection. The ART
market grew out of a series of insurance crises in the 1970s through 1990s, when
rising rates and the difficulty of obtaining sufficient amounts of coverage in some
commercial insurance lines drove purchasers of traditional coverage to seek more
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robust ways to buy protection. Most of these techniques permit investors in the
capital markets to take a more direct role in providing insurance and reinsurance
protection, so ART brings about a convergence of insurance and financial markets.

Key sectors of the Alternative Risk Transfer marketplace include cat bonds,
reinsurance sidecars, the use of captive insurance companies, financial reinsurance,
finite risk insurance, contingent capital, captive insurers and reinsurers, dual trigger
insurance, industry loss warranties and weather derivatives. Among them, risk
securitization including catastrophe bonds and reinsurance sidecars is the major
sector of ART activity.

Cat bonds are risk linked securities that transfer a specified set of risks from the
sponsor to the investors. They are used by insurers as an alternative method to
traditional catastrophe reinsurance.

Traditionally, in order for insurers to pass on some of their risks, they would
typically purchase catastrophe insurance and pass the risk on to reinsurers. Cat
bonds provide insurers an alternative method to minimize the risk and pass on the
risk to investors instead. The insurer would act as a sponsor of the cat bond. The
insurer works closely with an investment bank to structure the specific features of
the bond. Cat bonds are generally issued by special purpose entities in Bermuda.
Key participants of cat bonds are specialized catastrophe-oriented funds and asset
managers.

Similar to that of a regular bond with floating rates, cat bond pays regular
coupons with a LIBOR plus anywhere from 3% to 20%. A different feature of the
cat bond is that it has a trigger condition. If the trigger condition is not met, the cat
bond behaves like a regular bond. On the other hand, if the trigger condition is met,
the principal initially paid by the investor is forgiven and the sponsor would use the
money to pay claims.

• Indemnity: the cat bond is triggered by the issuer’s actual losses and the
sponsor is indemnified.

• Modeled loss: The cat bond is triggered when the modeled losses are above a
certain threshold determined by the catastrophe modeling software.

• Indexed to industry loss: The cat bond is triggered when the total loss of the
insurance industry reaches a certain threshold.

• Parametric: The bond is triggered based on the index of natural hazard.

Investors are interested in investing in cat bonds for two main reasons. First, cat
bonds have higher interest rates than comparably rated corporate instruments if they
are not triggered. Secondly, cat bonds help investors achieve diversification because
their return is uncorrelated with the return on other investments in fixed income or
in equities. Key participants of cat bonds are specialized catastrophe-oriented funds
and asset managers.

Cat bonds are rated by agencies such as S&P, Moody’s and Fitch. Cat bonds are
generally rated below investment grades (B and BB). The probability of default due
to a catastrophic event (earthquake or hurricane) triggering the loss of capital is the
key rating criteria. Catastrophe models are used to determine this probability.
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2.2 New Derivatives to Promote Earthquake Protection

Figure 1 illustrates the simplified scheme of the derivatives we propose in this
chapter. Suppose that someone buys a house for $300 K, and invests $25 K in an
earthquake protection system, e.g., conventional strengthening, dampers and
base-isolation. The total amount, $325 K, is paid. Simultaneously, the owner makes
a deposit, say $25 K × α (coverage ratio), in the SPV (Special Purpose Vehicle).

The building owner then receives coupons, which consists of premiums from an
insurer and LIBOR on the deposit, until a pre-specified earthquake event takes place,
or the bond matures (Fig. 1a). As shown in Fig. 1b, if a specified earthquake occurs
before the maturity, the notional deposited by the building owner, $25 K × α, will
be immediately paid to the insurer, and the contract will terminate. The insurer then
covers the payout to its policy holders damaged by the earthquake. The building
owner must lose the deposit of $25 K × α, but he/she should realize that the pro-
tection saved his/her life and property and the investment decision to protect the
house against the earthquake risk was the right decision.

Until the earthquake happens, the initial investment in the protection will be
compensated by the coupon payments, and if the bond matures before any earth-
quake event, the deposit of $25 K × α is also returned to the home owner
(Fig. 1c).

The above example assumed that the house owner pays the construction cost,
$325 K, and the deposit, $25 K × α, by cash. However, in reality, many building
owners use mortgages for most if not all of their home purchase cost. The use of a
mortgage is not essential to this scheme, but it will make the financing of the SPV
deposit even easier for the homeowner. Figure 2 explains the scheme as a realistic
example.

The house owner pays the mortgage for construction and deposit,
($12.7 K + $1.1 K + $1.1αK)/2, semiannually for 30 years. The lender pays
$325 K to the builder for the construction, and a notional of $25 K × α to the SPV
at the beginning. The building owners can receive the coupons, which covers part
of or whole mortgage payments for the protection of $1.1 K per year, until
earthquakes occur.

If an earthquake occurs, the notional is moved to the insurer and the contract
terminates as seen in Fig. 2b. After this event, the building owner must continue to
pay the mortgage without receiving the coupon. But again, the owner should be
willing to give the notional because the protection protected his/her property and
life, and he/she can realize that the investment was correct.

Figure 2c suggests that if there is no earthquake before the maturity, the notional
of $25 K × α is redeemed to the building owner.

The above example assumed a digital payoff, i.e., $0 or $25 K × α, for sim-
plicity. In practice, the amount of payoff (LGD: Loss Given Default) can be
determined as a function of the magnitude of the earthquake event, as portrayed in
Fig. 3. If earthquake of magnitude greater than the attachment point, Ma, does not
occur, the whole notional is returned to the building owner, i.e., LGD = 0.
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Otherwise it is paid to the insurer, but the amount depends on the magnitude. In
case of an earthquake of magnitude greater than the detachment point, Md,
LGD = 1.0.

(a) At the beginning and until earthquake occurs 

(b) If earthquake occurs before maturity 

(c) If there is no earthquake before maturity 

SPVBuilding 
owner Insurer 

Builder 

House: $300K
Protection:  $25K

Notional: $25K × α

Notional: $25K × α

PremiumPremium + LIBOR

SPVBuilding 
owner Insurer 

Builder 

House: $300K
Protection:  $25K

Notional: $25K × αNotional: $25K × α

SPVBuilding 
owner Insurer 

Builder 

House: $300K
Protection:  $25K

Notional: $25K × α

Fig. 1 Basic scheme of proposed derivatives (without using mortgage)
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The insurer receives more the larger the earthquake. This is a common feature of
many current cat bonds. On the other hand, the owner loses more as a larger
earthquake happens. This is appropriate since he/she will receive greater protection,
in saving his/her life and property, the larger the earthquake.

(a) At the beginning and until earthquake occurs 

(b) If earthquake occurs before maturity 

(c) If there is no earthquake before maturity 

SPV Building 
owner Insurer 

Lender 

House:      $300K 
Protection:  $25K

Premium Premium + LIBOR 

Builder 

House:      $12.7K/year 
Protection:  $1.1K/year × 30 years
Notional:    $1.1αK/year   (r = 3%)

Notional: $25 K × α

SPV Building 
owner Insurer 

Lender 

House:      $300K 
Protection:  $25K

Builder 

House:      $12.7K/year 
Protection:  $1.1K/year × 30 years
Notional:    $1.1αK/year   (r = 3%)

Notional: $25K × α

Notional: $25K × α

SPV Building 
owner Insurer 

Lender 

House:      $300K 
Protection:  $25K

Builder 

House:      $12.7K/year 
Protection:  $1.1K/year × 30 years
Notional:    $1.1αK/year   (r = 3%)

Notional: $25K × α

Notional:  $25K × α

Fig. 2 Basic scheme of proposed derivatives (using mortgage)

Innovative Derivatives to Drive Investment in Earthquake … 543



Figures 1 and 2, for simplicity, assume a direct contract between the SPV and
building owner. Nonetheless, it may not be practical because a large number of
building owners should be collected and pooled in order to balance the payoff
amount. The products can be distributed by the builder or lender, where the pre-
mium and redemption are paid to the building owners through either of the two
entities. The incentive for builders and lenders is that they can increase their lending
amounts or construction business by utilizing the derivatives as a sales tool.

2.3 Derivatives Price

The proposed security involves two prices for the insurer leg and for the building
owner leg. The first one is the premium paid from the insurer to the owner through
SPV, as illustrated in Figs. 1 and 2. This premium can be priced by putting risk
premium on the annual expected loss (Geman 1999), or following CDS (Credit
Default Pricing) pricing (Lando 2004).

The second price is the notional amount that the building owner is required to
deposit in the SPV relative to the compensation amount (sum of the present values
of spread payments), α in Figs. 1 and 2, until the maturity given an earthquake does
not occur. For example, if this ratio is computed to be 1.5, a deposit of $37.5 K is
required when the owner intends to cover a protection cost of $25 K. Section 3
formulates those prices, and Sect. 4 provides numerical examples.

3 Pricing Formula

In practice of cat bond pricing, the annual expected loss without discounting, E[L],
is taken as a proxy to determine the market spread (Misani 1999; Lane 2006). We
will compute risk-neutral spread as well, so it is formulated here.

By considering the scheme presented in Figs. 1 and 2, we can see that the payoff
of the proposed derivatives is similar to that of a CDS. The difference is that a CDS

LGD(M) 

M

1.0 

Ma Md

Building owner Insurer

Moccur 

Fig. 3 Magnitude-dependent
loss given default to building
owner
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does not require notional up front, and a premium leg pays only when default
occurs. On the other hand, a principal is deposited in the SPV in the proposed
derivatives in order to eliminate credit risk of building owners. However, this does
not make any difference in terms of pricing because the interest on the deposit,
LIBOR, is paid to the building owner. Thus we can apply CDS pricing to our case.

By referring to Lando (2004), the present value to the insurer leg is formulated as

VInsurer =EQ
0 e−

R τ

0
r sð Þds ⋅ LGDðMÞ ⋅N ⋅ 1 τ< Tf g

h i
ð3:1Þ

where r(s) is a risk-free rate, LGD(M) is a magnitude-dependent loss given default,
N is a notional, τ is the time when an earthquake occurs, and 1{τ<T} is an indicator
function which is equal to one if earthquake occurs and zero if no earthquake
happens before its maturity, T. Similarly, the value for the building owner leg is
expressed as

VOwner =EQ
0 ∑

nΔ

i=1
e
− ∫

ti

0
r sð Þds

⋅ sRN ⋅Δ ⋅N ⋅ 1 τ< tif g + e−
R τ

0
r sð Þds ⋅ sRN ⋅ ðτ− tiÞ ⋅N ⋅ 1fti < τ< ti+1g

2
4

3
5

ð3:2Þ

where nΔ is the number of coupon payments to the owner, sRN is a risk-neutral
(physical) spread over LIBOR, Δ is a time interval between two successive coupon
payments. The first term in the expectation accounts for the sum of present values
of risk-neutral spreads, and the second term denotes an accrued spread. By equating
the values of both parties, we obtain

sRN =
EQ
0 ½e− ∫ τ

0 r sð Þds ⋅ LGDðMÞ ⋅ 1fτ< Tg�
EQ
0 ½∑

nΔ

i=1
e− ∫ ti

0 r sð Þds ⋅Δ ⋅ 1 τ< tif g + e− ∫ τ
0 r sð Þds ⋅ ðτ− tiÞ ⋅ 1fti < τ< ti+1g�

. ð3:3Þ

Note that N disappeared. It is very difficult to obtain closed-form solutions for
the numerator and denominator because it is the first passage problem among
multiple potential earthquakes. Furthermore we will use not only the Poisson model
but also time-dependent probabilistic models for earthquake occurrences (see
Sect. 4). Therefore we will compute the numerator and denominator by performing
Monte Carlo simulations.

Market spread, smarket, is determined by multiplying a risk-neutral spread given
by Eq. (3.3) by a multiplier by considering risk- and ambiguous-aversion of
investors. The compensation for the building owner given earthquake does not
occur, C, is the sum of the present values of spreads up to maturity, i.e.,

C= ∑
T Δ̸

i=1
e−

R ti

0
r sð Þds ⋅ smarket ⋅Δ ⋅N. ð3:4Þ
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By solving Eq. (3.4) for N/C, we obtain

N
C

=
Deposit

∑PV ½spreadjno earthquake� =
1

smarket ⋅Δ ⋅ ∑T Δ̸
i=1 e

− ∫ ti
0 r sð Þds . ð3:5Þ

N/C represents how much the building owner have to make deposit relative to
the coverage given no earthquake (equivalent to α in Figs. 1 and 2). For example,
N = $50 K if the owner wants to cover $25 K and if N/C = 2.0. Figure 4 plots the
relationship between smarket and N/C, assuming rf = 1.5% and Δ = 0.5 year.

We can see N/C is inversely proportional to smarket. This means that the owner is
required more deposit as the market spread becomes smaller. Note that the smaller
spread results from a smaller probability of earthquake, i.e., a larger probability that
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the deposit is redeemed to the owner. This implies the tradeoff between the amount
of deposit and the earthquake probability (or default probability). In general,
probabilities of large earthquakes are small, e.g., 10% in 10 years, meaning the
building owners are repaid in high probabilities, 90% in 10 years, although they
have to make considerable amounts of deposits.

Also N/C becomes smaller as T gets longer. This is simply understood: the
probability of earthquake rises with length of time, i.e., the probability that the
owner is redeemed declines as time window is extended.

4 Case Study

This section presents numerical examples of the security proposed in Sect. 2. We
utilize a cat bond that was actually issued in Japan in 1997 because we can
benchmark our pricing. Section 4.1 outlines the cat bond, and Sect. 4.2 describes
the probabilistic models of earthquake occurrences. Our pricing of the cat bond is
benchmarked with the actual one in Sect. 4.3. Section 4.4 prices the notional
amount that the building owner is required in the proposed derivatives.

4.1 An Actual Cat Bond

At least ten earthquake-related bonds have been issued in Japan since the first one in
1997 (MMC Securities 2007). This section deals with the first cat bond issued by
Parametric Re (Misani 1999). In order to securitize the insurance risk of $100
million underwritten by Tokio Marine, Parametric Re was established on November
3 in 1997 based on the insurance law of Cayman Islands. The 10-year cat bonds
would mature November 19 in 2007, and consist of the following two tranches.

• Note: paying LIBOR + 430 basis points. The notional of $80 million is not
protected.

• Unit: paying LIBOR + 206 basis points. The notional of $20 million is
protected.

In the worst case, investors of the note lose all their principal while those of the
unit lose 50%. This means the cat bond covers $90-million reinsurance of Tokio
Marine.

If an earthquake with magnitude of 7.1 or greater occurs within the inner grid
shown in Fig. 5, the investors would lose. The inner grid covered large cities with
huge exposures such as Tokyo and Yokohama. The payoff depends on the earth-
quake magnitude, and is listed in Table 2. Similarly, the unit deprives the investors
of the notional if an earthquake of 7.3 or greater happens inside the outer grid
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(excluding the inner grid). But the loss is calculated as the ratios in the third column
in Table 2 times the worst loss of 50%.

The trigger, which would determine the payoff, was specified as the magnitude
reported by the Japan Meteorological Agency (JMA). This was the first cat bond
whose trigger was a physical measurement (as described in the previous section,
others were triggered by actual insurance loss or model loss, which are ambiguous
for investors). Investors favored this feature because physical measurements enable
them to compute the payoffs objectively and rapidly. On the other hand, Tokio

Fig. 5 Grids for cat bond

Table 2 Investors’ loss versus earthquake magnitude (from Misani 1999)

Magnitude Loss to principal
Note (Inner grid) (%) Unit (Outer grid excluding inner grid) (%)

≥ 7.1 25 0
≥ 7.2 40 0
≥ 7.3 55 25
≥ 7.4 70 44
≥ 7.5 85 63
≥ 7.6 100 81
≥ 7.7 100 100
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Marine took the basis risk, i.e., the amount of the payoffs from the cat bonds would
not match that of the insurance payments to its clients once an earthquake takes
place.

Figure 6 illustrates the simplified issuance scheme of the cat bond. Parametric
Re issued the cat bonds as an SPV (Specific Purpose Vehicle), which is established
to eliminate the credit risk of bond issuer (insurance company). Tokio Marine made
a reinsurance contract of $90 million with Swiss Re. Tokio Marines was to pay
fixed rate, i.e., the reinsurance cost would be fixed during the 10 years. Parametric
Re entered into interest swap, paying fixed rate and receiving floating rate, with
Swiss Re Financial Products. This enabled Parametric Re to pay floating rate to the
investors while receiving fixed rate from Swiss Re.

EQE International, which was a leading firm in risk management of natural
hazards, constructed a risk model of the cat bond. By collecting past earthquake

Tokio Marine
(Insurance)

Swiss Re
(Reinsurance)

Parametric Re
(SPV) Investors

Reinsurance
$90M

Fixed rate

Reinsurance
$90M

Fixed rate

Principal
$90M

LIBOR + spread

Swiss Re Financial Products
(Swap counterpart)

Fixed rate LIBOR 

Fig. 6 Transaction scheme of the cat bond (simplified from Misani 1999)

Table 3 Risk evaluation of cat bond (from Misani 1999)

Magnitude Note Unit
Cum. Prob.
(%)

Prob.
(%)

Loss
(%)

E[Lm]
(%)

Cum. Prob.
(%)

Prob.
(%)

Loss
(%)

E[Lm]
(%)

≥ 7.1 0.64 0.12 25 0.03 0.37 0.00 0 0.00
≥ 7.2 0.52 0.09 40 0.04 0.37 0.00 0 0.00
≥ 7.3 0.43 0.07 55 0.04 0.37 0.07 25 0.02
≥ 7.4 0.36 0.06 70 0.04 0.30 0.06 44 0.03
≥ 7.5 0.30 0.05 85 0.04 0.24 0.04 63 0.03
≥ 7.6 0.25 0.04 100 0.04 0.20 0.04 81 0.03
≥ 7.7 0.21 0.21 100 0.21 0.16 0.16 100 0.16

E
[L] =

44 bps E
[L] =

26 bps

Market spread
=

430
bps

Market spread
=

206
bps
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data and introducing the latest seismological knowledge, EQE International esti-
mated the probability of earthquakes within the specified grids (see Table 3). The
expected losses of the note and unit were 0.44% and 0.26%, respectively. According
to this evaluation, Moody’s rated the note and unit as Ba2 and Baa3, and Duff and
Phelp’s rated BB and BBB-.

The spreads for the note and unit were priced to be 430 basis points and 206
basis points, respectively (Table 3). These spreads were higher by 2% than those of
the same rated corporate bonds issued around the same time.

4.2 Earthquake Models

Based on the up-to-date seismological knowledge, USGS (2003) and HERP (2005)
constructed earthquake models around San Francisco Bay Region and Japan,
respectively. HERP identified more than three hundred seismic sources, among
which Table 4 lists ones around the grids of the benchmark cat bond. We utilize the
cutting-edge seismic models developed by HERP (2005) in our derivatives pricing.

Table 4 contains magnitude, MJMA, mean return period, T, aperiodicity, α, and
the time elapsed since the last earthquake, t0. HERP prepared mean and conser-
vative parameters for the BPT (Brownian Passage Time) model (Matthews et al.
2002), and the latter gives higher probabilities. The horizontal-plane projections of
the seismic sources are mapped in Figs. 7, 8 and 9.

As shown in Table 2, the cat bond pays only when an earthquake of magnitude
of 7.1 or greater occurs. Thus we exclude the earthquakes with magnitude smaller
than 7.1, i.e., Isehara, Miura peninsula main Takeyama, and Miura peninsula south,
and consider the earthquakes highlighted in Table 4 in the following analysis.

For the Poison model in Monte Carlo simulations, we generate a uniform ran-
dom variable at each time increment, dt. If this number is smaller than the

Table 4 Seismic sources around Tokyo (HERP 2005 as of January 2006)

# Name Active fault/
Plate boundary MJMA

Prob. 
(30 years)

Prob. 
model 

T (years) α t0 (years )
mean conservative mean conservative

01 Kamogawa Teichi Active fault 7.2 0.38% Poisson 7900 7900 -- -- --
02 Kanto Heiya Hokuseien Active fault 8.0 0% BPT 21500 13000 0.24 4350 6200
03 Hirai-Kushibiki Active fault 7.1 0.43% Poisson 7000 7000 -- -- --
04 Tachikawa Active fault 7.4 1.3% BPT 12500 10000 0.24 16500 20000
05 Isehara Active fault 7.0 0% BPT 5000 4000 0.24 956 1606
06 Kannawa-Kozu-Matsusda Active fault 7.5 4.2% BPT 1050 800 0.24 781 906

07 Miura peninsula main
Kinugasa-Kitatake Active fault 7.2 0.0047% BPT 3400 1900 0.24 1406 1506

08 Miura peninsula main
Takeyama Active fault 6.9 8.4% BPT 1750 1600 0.24 2103 2300

09 Miura peninsula south Active fault 7.0 1.9% Poisson 1600 1600 -- -- --
10 Taisho-type Kanto Plate boundary 7.9 0.065% BPT 219.7 219.7 0.21 82.3 82.3
11 South Kanto Plate boundary 6.7-7.2 72% Poisson 23.8 23.8 -- -- --
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probability that the event occur during dt, computed by Eq. (4.1), an earthquake is
considered to happen.

F dtð Þ=1− expð− μ ⋅ dtÞ ð4:1Þ

where μ is a mean occurrence rate per unit time (= 1/T). The BPT model is a
closed-form probability density function of time intervals for the Brownian
Relaxation Oscillator (BRO). The BRO regards stress accumulation in a seismic
source as the arithmetic Brownian motion which is given by

x t+ dtð Þ= x tð Þ+ μ ⋅ dt+ α
ffiffiffiffiffiffiffiffiffiffi
μ ⋅ dt

p
⋅ zðtÞ ð4:2Þ

where x(t) is a stress level at time t and z(t) is a standard normal random variable.
The BRO is immediately relaxed (reset to be zero) when it hits the threshold,
x(t) = 1.0, the immediate relaxation accounts for an earthquake. The fact that there
has been no earthquake since the last event (between t = –t0 and t = 0) requires to
cull out cycles which breach the following inequality in a Monte Carlo simulation.

Fig. 7 Active faults around grids
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x tð Þ<1.0 ∀− t0 < t<0 ð4:3Þ

where t = 0 is set to be the starting time of derivatives contract. Figure 10 displays
one sample path of the BRO for the Taisho-type earthquake with μ = 1/219.7 (per
year), α = 0.21, and t0 = 82.3 (year). This figure demonstrates that the earthquake
occurs once about 220 years, and about five times in thousand years. The time
interval is random because of the arithmetic Brownian stress accumulations.

The benchmark cat bond pays only when the epicenter of an earthquake falls in
either grid. An epicenter is the horizontal-plane projection of a hypocenter, which is
the point where the fault rupture starts. As seen in Figs. 7, 8 and 9, only part of
some seismic sources falls into the grids, and the fractions are presented in Table 5.

It is very difficult to predict the location of epicenter or hypocenter even by the
most advanced seismological knowledge, and HERP (2005) assumes that it is
uniformly distributed within a fault rupture plane. We follow this assumption in
Monte Carlo simulations to compute the numerator and denominator in Eq. (3.3).
For example, the inner-grid cat bond pays in a probability of 50% even if the
Tachikawa earthquake happens.

The seismic sources mechanically interact with each other through underground
structures. For example, the stress distribution around a seismic source changes and
its earthquake probability rises/drops just after a neighboring earthquake occurs.

Fig. 8 Seismic source and fault plane of South Kanto earthquake
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Unlike USGS (2003), HERP (2005) does not take into account the mechanical
interaction yet and assumes the activities of seismic sources are independent of each
other. We follow this assumption.

Fig. 9 Fault plane of Taisho-type Kanto earthquake

Fig. 10 A sample path of Brownian Relaxation Oscillator (μ = 1/219.7, α = 0.21, and t0 = 82.3)
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4.3 Benchmarking

By using the seismological models presented in Sect. 4.2, we computed the annual
expected loss, E[L], and risk-neutral spread, sRN, of the benchmark cat bond. The
latter is calculated by Eq. (3.3), where the numerator and denominator are evaluated
by Monte Carlo simulations with 100,000 cycles in each case. Time increment, dt,
is set to be 0.01 year.

The annual expected loss of the cat bond, E[L], is time-dependent because we
are using not only the Poisson model but also the BRO model. We can also
calculate the “averaged” annual expected loss ex post by assuming the process
follows the Poisson model. First we compute the probability mass function of LGD
during the maturity of 10 years, F(10). By substituting F(10) into Eq. (4.6), the
“averaged” annual probability, F(1), is evaluated.

FðTÞ=1− e− T μ̸ ð4:4Þ

Fð1Þ=1− e− 1 μ̸ ð4:5Þ

Fð1Þ=1− f1−F Tð Þg1 T̸ ð4:6Þ

The “averaged” annual expected loss is the average of LGD weighted by the
“averaged” annual probability, F(1, LGD).

E½L�= ∑all LGD Fð1, LGDÞ ⋅ LGD ð4:7Þ

Table 6 compares our estimations to the benchmark given by Geman (1999).
Our mean model gives the numbers comparable to the benchmark, and our con-
servative model gives lager values, especially, for the outer-grid bond.

Table 5 Fraction of seismic source falling into cat bond grids

# Name Inner grid Outer grid

01 Kamogawa Teichi 1.000 1.000
02 Kanto Heiya Hokuseien 0.355 0.774
03 Hirai-Kushibiki 0.000 1.000
04 Tachikawa 0.500 1.000
05 Isehara 0.250 1.000
06 Kannawa-Kozu-Matsusda 0.000 1.000
07 Miura peninsula main Kinugasa-Kitatake 1.000 1.000
08 Miura peninsula main Takeyama 1.000 1.000
09 Miura peninsula south 1.000 1.000
10 Taisho-type Kanto 0.521 0.910
11 South Kanto 0.714 0.998
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To be sure, we are using a very different model from the benchmark (the seis-
mological model for the actual pricing is not opened to the public). This is because
the actual pricing was done before the cat bond issue in 1997 and we are using
newer models developed by HERP (2005), including the BPT models first appeared
in seismology in 1999. Nevertheless our results are comparable to the benchmark.

We can confirm that sRN is slightly larger than E[L] in each case. This is mainly
because the former considers the time value of future payoffs whereas the latter does
not.

4.4 Pricing

Now we price the proposed derivatives by supposing it will be issued in 2010,
which is 13 years after the benchmark cat bond. We performed the same Monte
Carlo simulations as those shown in Sect. 4.3 except for the values of t0, starting
times since the last earthquakes.

Table 7 presents the results for the conservative model. By comparing Tables 7
to 6, it is found that E[L] and sRN become slightly greater. This is because a BRO is
more likely hit the threshold as the longer time elapses since the previous
earthquakes.

Lane (2006) indicated that the ratio of smarket to E[L] comes about five recently.
Thus we hypothesize smaket as 250 bps for the inner grid and 500 bps for the outer
grid. By substituting these numbers along with T = 10 years, Δ = 0.5 years, and
rf = 1.5% into Eq. (3.5), we obtained N/C of 4.32 and 2.16, respectively.

Figure 11 illustrates the outer-grid case, where the building owner is required to
deposit $54 K (= $25 × 2.16) when he/she wants to cover the protection cost of
$25 K. Instead he/she can receive annual coupons (500 bps + LIBOR) × $54 K
until an earthquake of 7.3 or greater (if any) or maturity. Unless such an earthquake

Table 6 Annual expected loss and spread (in bps) (starting time of November 1997)

Grid Benchmark
(Geman 1999)

Mean model Conservative model

E[L] smarket Averaged E[L] sRN Averaged E[L] sRN
Inner 44.00 430 32.25 33.15 49.99 52.11
Outer 26.00 206 30.23 32.78 99.00 112.01

Table 7 Annual expected
loss, spread (in bps), and
required notional (starting
time of January 2010)

Grid Conservative
model

smarket

(hypothetical)
N/C

E[L] sRN
Inner 50.43 52.63 250 4.32
Outer 102.05 115.62 500 2.16
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occurs for 10 years, the principal of $54 K will be redeemed to the owner. If such
an earthquake occurs, the notional is slit to the building owner and the insurer
depending on its magnitude.

(a) At the beginning and until earthquake occurs

SPVBuilding
owner Insurer

Lender

House: $300K
Protection:  $25K

Premium(500bps + LIBOR) × $54K

Builder

House: $12.7K/year
Protection:  $1.1K/year × 30 years
Notional:    $2.3K/year     (r = 3%)

Notional: $54K

(b) If earthquake of magnitude M occurs before maturity of 10 years

(c) If there is no earthquake before maturity of 10 years

SPVBuilding
owner Insurer

Lender

House: $300K
Protection:  $25K

Builder

House: $12.7K/year
Protection:  $1.1K/year × 30 years
Notional:    $2.3K/year     (r = 3%)

Notional: $54K

$54K × LGD(M)

$54K × {1-LGD(M)}

SPVBuilding
owner Insurer

Lender

House: $300K
Protection:  $25K

Builder

House: $12.7K/year
Protection:  $1.1K/year × 30 years
Notional:    $2.3K/year     (r = 3%)

Notional: $54K

Notional: $54K

Fig. 11 Numerical example for outer grid (using mortgage)
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Figure 12 is the probability mass function of the LGD for the building owner
during the contract period of 10 years. For the outer grid, he/she can receive all
coupons and the principal of $54 K in a probability of 83.34%. He/she loses $24 K
(0.44 × $54 K) in 5.33% and $34 K (0.63 × $54 K) in 11.21%. On the other
hand, the owner has to make a larger deposit of $180 K (= $25 × 4.32) for the
inner grid in return for a higher redemption probability of 88.88%.

This exemplifies the tradeoff between the default probability and the amount of
the notional. The deposit amount relative to the compensation (N/C) is larger in
seismically safe regions because the redemption probability (or no earthquake
probability) is larger. In contrary, the deposit is smaller in seismically active regions
because the redemption probability is smaller.

5 Conclusions

This chapter presented derivatives to spur the penetration of physical
earthquake-protection technologies, especially in seismically active regions. This
contract pays coupons to a building owner until a pre-determined earthquake takes
place (if any) or maturity. The coupons cover the owner’s investment in the pro-
tection in case of no earthquake. This security is constructed by swapping the
payoff with the insurer leg of a regular cat bond because their payoffs are the mirror
image of each other. In order to pay to the insure leg when earthquake occurs, the
building owner deposits a principal.

There are two steps to price the proposed security. The first step is the spread of
an ordinary cat bond. In addition to a conventional pricing based on annual
expected loss, this chapter demonstrated that our case can utilize CDS pricing.
Needless to say, the greater the default (or earthquake risk) is, the greater a spread
is. The second step is to determine the notional amount deposited by the building
owner relative to the amount he/she wants to cover if there is no earthquake. We
clarified the tradeoff between the default (earthquake) probability and the notional

(a) Inner grid (b) Outer grid

PMF(LGD) (%)

LGD LGD

PMF(LGD) (%)

88.88

2.895.023.21 0.000.00 0.00

83.34

0.00 0.00 0.005.33 11.21

Fig. 12 Probability mass function of loss to building owners (within 10 years)
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amount required: the notional amount is greater as the probability that earthquake
does not occur, which result in the full coverage and redemption to the building
owner, the higher.

A numerical example dealing with an actual cat bond was presented. The payoff
of the cat bond under consideration is determined by magnitude of earthquakes, an
objective physical measurement. We introduced the up-to-date seismological
models, i.e., Poisson and Brownian Relaxation Oscillator, and parameters devel-
oped by Japanese seismologists into cat bond pricing. Based on market spread,
inferred by putting market risk premium over the evaluated annual expected loss or
risk-neutral spread of the cat bond, we estimate the notional amount for the building
owner. We numerically confirmed the tradeoff between the notional amount and
earthquake probability. This means that the notional requirement is smaller in more
dangerous places.

Let’s look at the potential markets in Japan. The total amount of housing and
building starts was about $240 billion in the fiscal year of 2007 according to the
Ministry of Land, Infrastructure, and Transportation (MLIT 2008). The earthquake
protection markets are estimated to be about $4.8–$24 billion provided that an
additional cost ranges from 2% to 10% relative to the total amount of a new
construction. The market for remodeling of existing housings and buildings was
about $14 billion in the fiscal year of 2005 (MLIT 2007). The protection markets
are estimated to be about $0.7–$4.2 billion by assuming an earthquake protection
costs 5–30% in remodeling. The total markets of earthquake protections for new
and existing buildings are estimated to be $5.5–$28.2 billion, which will remark-
ably contribute to Japan’s GDP of 4.5 trillion.

The derivatives security proposed in this chapter plays several roles. First it
expands earthquake reinsurance capacity like regular cat bonds. Second it increases
the business of construction industry because they can sell their physical tech-
nologies more. The emphasis is that the derivatives are applicable not only to
constructions of new buildings but also to seismic upgrades of existing ones. Third
lenders also increase their mortgage amount to building owners. Finally the prod-
ucts enable not only to mitigate economic loss but also to save human lives, by
fueling penetration of physical earthquake-protection technologies. This is the
essential difference from conventional earthquake insurances. They transfer loss
from one to others, but do not reduce loss at all from the macroscopic perspective.
Nor do they save human lives. But our derivatives can do both.
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